中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 976-988 DOI: 10.7536/PC171029 Previous Articles   Next Articles

• Review •

Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications

Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*   

  1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21202116).
PDF ( 866 ) Cited
Export

EndNote

Ris

BibTeX

Due to their great potential in membrane separation and catalytic membrane reactors, considerable research effort has been applied to the b-oriented MFI zeolite membrane. The latest developments of secondary growth strategies of b-oriented MFI zeolite membrane are reviewed in this paper. In particular, the effects of important factors on preparing b-oriented MFI films, such as synthesis of seeds, seed-coating methods and synthetic solution compositions, are summarized in detail. The advantages and disadvantages of these synthetic strategies, and their influences on the separation performance(separation factor and permeance) and catalytic performance of synthesized MFI zeolite membranes are evaluated. This review also introduces the latest breakthroughs in monitoring and controlling growth of two-dimensional(2D) zeolite crystal, and bottom-up syntheses of membranes with ultra high selectivity and flux from zeolite nanosheets produced in situ. Based on the extensive discussion of various preparation strategies, the developing trends in the preparation of b-oriented MFI zeolite membrane are forecasted.
Contents
1 Introduction
2 Progress in synthesis of zeolite seeds
3 Progress in coating methods
3.1 Manual assembly
3.2 Air-water interfacial assembly
3.3 Other coating methods
4 Progress in secondary growth
4.1 Prevention of the attachment between seeds and (0k0) face
4.2 Change of mineralizing agents
4.3 Improvement of secondary growth synthesis solution composition
4.4 Ultra-selective ultra-flux zeolite membrane
5 Conclusion and outlook

CLC Number: 

[1] Flanigen E M, Bennett J M, Grose R W, Cohen J P, Patton R L, Kirchner R M, Smith J V. Nature, 1978, 271(5645):512.
[2] Kokotailo G T, Lawton S L, Olson D H, Meier W M. Nature, 1978, 272(5652):437.
[3] Corma A. Cheminform, 1995, 26(37):559.
[4] Davis M E. Nature, 2002, 417(6891):813.
[5] Cundy C S, Cox P A. Chem. Rev., 2003, 103(3):663.
[6] Tsapatsis M. AlChE J., 2014, 60(7):2374.
[7] Lin Y S, Kumakiri I, Nair B N, Alsyouri H. Sep. Purif. Methods, 2002, 31(2):229.
[8] Gouzinis A, Tsapatsis M. Chem. Mater., 1998, 10(9):2497.
[9] Zhang X F, Liu H O, Yeung K L. Materials Chemistry & Physics, 2006, 96(1):42.
[10] Agrawal K V, Topuz B, Pham T C, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Adv. Mater., 2015, 27(21):3243.
[11] Pham T C, Nguyen T H, Yoon K B. Angew. Chem. Int. Ed. Engl., 2013, 52(33):8693.
[12] Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. Angew. Chem. Int. Ed. Engl., 2014, 53(13):3492.
[13] Gora L, Kuhn J, Baimpos T, Nikolakis V, Kapteijn F, Serwicka E M. Analyst, 2009, 134(10):2118.
[14] Fu D L, Schmidt J E, Ristanovic Z, Chowdhury A D, Meirer F, Weckhuysen B M. Angew. Chem. Int. Ed. Engl., 2017, 56(37):11217.
[15] Snyder M A, Tsapatsis M. Angew. Chem., 2007, 46(40):7560.
[16] Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Chem. Soc. Rev., 2015, 44(20):7128.
[17] Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Cheminform, 2012, 43(40):2829.
[18] 彭勇(Peng Y), 王正宝(Wang Z B). 化学进展(Progress in Chemistry), 2013, 25(12):2178.
[19] 郎林(Lang L), 张超(Zhang C), 阴秀丽(Yin X L), 吴创之(Wu C Z). 化学进展(Progress in Chemistry), 2011, 23(5):1022.
[20] Xia S X, Peng Y, Wang Z. J. Membr. Sci., 2016, 498:324.
[21] Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. Industrial & Engineering Chemistry Research, 2012, 51(37):12073.
[22] Chaikittisilp W, Suzuki Y, Mukti R R, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Angew. Chem. Int. Ed. Engl., 2013, 52(12):3355.
[23] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Cheminform, 2009, 461(7261):246.
[24] Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W, Cho H J, Fetisov E O, Thyagarajan R, DeJaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Nature, 2017, 543(7647):690.
[25] Zhang X Y, Tsapatsis M. Science, 2012, 336(6089):1684.
[26] Zhang F Z, Masayoshi F, Takahashi M. Chem. Mater., 2005, 17(5):1167
[27] Mabande GTP, Ghosh S, Lai Z P, Schwieger W, Tsapatsis M. Ind. Eng. Chem. Res., 2007, 44(24):9086.
[28] Deng Z Y, Pera-Titus M. Mater. Res. Bull., 2013, 48(5):1874.
[29] Di J C, Zhang C, Yan W F, Wang X F, Yu J H, Xu R R. Microporous Mesoporous Mater., 2011, 145(1/3):104.
[30] Ji M L, Liu G Z, Chen C, Wang L, Zhang X W. Microporous Mesoporous Mater., 2012, 155:117.
[31] Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Angew. Chem. Int. Ed. Engl., 2007, 46(17):3087.
[32] Yoon K B. Acc. Chem. Res., 2007, 38(19):29.
[33] Pham T C T, Yoon K B. Science, 2011, 334(6062):1533.
[34] Zhou M, Liu X F, Zhang B Q, Zhu H M. Langmuir, 2008, 24(20):11942.
[35] Chan R Y. Chem. Lett. 2016, 45:1057.
[36] Sandström L, Sjöberg E, Hedlund J. J. Membr. Sci., 2011, 380(1/2):232.
[37] Zhou H, Korelskiy D, Leppäjärvi T, Grahn M, Tanskanen J, Hedlund J. J. Membr. Sci., 2012, 399:106.
[38] Zhou M, Hedlund J. J. Mater. Chem., 2012, 22(47):24877.
[39] Peng Y, Zhan Z Y, Shan L J, Li X M, Wang Z B, Yan Y S. J. Membr. Sci., 2013, 444:60.
[40] Topuz B, Önder A, Bowen T C, Kalipcilar H. Chem. Eng. Res. Des., 2017, 117:746.
[41] Tiriolo R, Rangnekar N, Zhang H, Shete M, Bai P, Nelson J, Karapetrova E, Macosko C W, Siepmann J I, Lamanna E. Adv. Funct. Mater., 2017, 27(25):1700864.
[42] Niu Z W, He J B, Russell T P, Wang Q. Angew. Chem. Int. Ed. Engl., 2010, 49(52):10052.
[43] Krishnaswamy R, Sood A K. J. Mater. Chem., 2010, 20(18):3539.
[44] Park J S, Jeong N C, Lee Y J, Kim M J, Yoon K B. Journal of Nanoscience and Nanotechnology, 2010, 10(1):370.
[45] Wang Z, Yu T, Nian P, Zhang Q C, Yao J K, Li S, Gao Z N, Yue X L. Langmuir, 2014, 30(16):4531.
[46] Nian P, Su M H, Yu T, Wang Z, Zhang B X, Shao X L, Jin X Y, Jiang N Z, Li S, Ma Q. J. Mater. Sci., 2016, 51(6):3257.
[47] Liu Y, Li Y S, Yang W S. J. Am. Chem. Soc., 2010, 132(6):1768.
[48] Shete M, Kumar M, Kim D, Rangnekar N, Xu D, Topuz B, Agrawal K V, Karapetrova E, Stottrup B, Al-Thabaiti S. Angew. Chem., 2017, 56(2):535.
[49] Zhou M, Hedlund J. J. Mater. Chem., 2012, 22(8):3307.
[50] Hye Jin J, Ji Hong L, Rodney S R, Hyunseob L, Seong In Y, Hu Young J, Tae Joo S, Christopher W B, Hyeon Suk S. 2D Mater., 2017, 4(1):014005.
[51] Azad I, Ram M K, Goswami D Y, Stefanakos E. Langmuir, 2016, 32(33):8307.
[52] Benito J, Sorribas S, Lucas I, Coronas J, Gascon I. ACS Appl. Mater. Interfaces, 2016, 8(25):16486.
[53] Rangnekar N, Shete M, Agrawal K V, Topuz B, Kumar P, Guo Q, Ismail I, Alyoubi A, Basahel S, Narasimharao K, Macosko C W, Mkhoyan K A, Al-Thabaiti S, Stottrup B, Tsapatsis M. Angew. Chem. Int. Ed. Engl., 2015, 54(22):6571.
[54] Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Dispersible Exfoliated Zeolite Nanosheets and Their Application as A Selective Membrane. Minneapolis:AIChE Meeting, 2011.
[55] Agrawal K V, Topuz B, Jiang Z Y, Nguenkam K, Elyassi B, Francis L F, Tsapatsis M, Navarro M. AlChE J., 2013, 59(9):3458.
[56] Kosinov N, Hensen E J M. J. Membr. Sci., 2013, 447:12.
[57] Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N. Angew. Chem., 2016, 55(25):7184.
[58] Woerdemann M, Glasener S, Horner F, Devaux A, De Cola L, Denz C. Adv. Mater., 2010, 22(37):4176.
[59] Woerdemann M, Alpmann C, Hörner F, Devaux A, Cola L D, Denz C. Optical control and dynamic patterning of zeolites(Eds. Dholakia K, Spalding G C). San Diego:SPIE NanoScience + Engineering, 2010. 7762.
[60] Li S, Demmelmaier C, Itkis M, Liu Z M, Haddon R C, Yan Y S. Chem. Mater., 2003, 15(14):2687.
[61] Lee I, Buday J L, Jeong H K. Microporous Mesoporous Mater., 2009, 122(1/3):288.
[62] Bellussi G, Carati A, Rizzo C, Millini R. Catal. Sci. Technol., 2013, 3(4):833.
[63] Zhang K, Lively R P, Noel J D, Dose M E, McCool B A, Chance R R, Koros W J. Langmuir, 2012, 28(23):8664.
[64] Gualtieri M L. Microporous Mesoporous Mater., 2009, 117(1):508.
[65] Zhou H, Korelskiy D, Sjöberg E, Hedlund J. Microporous Mesoporous Mater., 2014, 192:76.
[66] Korelskiy D, Grahn M, Ye P C, Zhou M, Hedlund J. RSC Adv., 2016, 6(70):65475.
[67] Peng Y, Lu X F, Wang Z B, Yan Y S. Angew. Chem. Int. Ed., 2015, 54(19):5709.
[68] Liu X L, Ravon U, Tuel A. Angew. Chem. Int. Ed. Engl., 2011, 50(26):5900.
[69] Caro J, Noack M. Advances in Nanoporous Materials. Amsterdam:Elsevier, 2010. 1.
[70] Lu X F, Peng Y, Wang Z B, Yan Y S. Chem. Commun., 2015, 51(55):11076.
[71] Lai Z P, Bonilla G, Diaz I, Nery J G, Sujaoti K, Amat M A, Kokkoli E, Terasaki O, Thompson R W, Tsapatsis M. Science, 2003, 300(5618):456.
[72] Li S, Wang X, Beving D, Chen Z W. J. Am.Chem.Soc., 2004, 126(13):4122.
[73] Li X M, Peng Y, Wang Z B, Yan Y S. CrystEngComm, 2011, 13(11):3657.
[74] Liu Y, Li Y S, Cai R, Yang W S. J. Mater. Chem. A, 2012, 2:16093.
[75] Peng Y, Lu H B, Wang Z B, Yan Y S. Chem. Commun., 2014, 48(54):6782.
[76] Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Payzant E A. Microporous Mesoporous Mater., 2000, 34(3):241.
[77] Lu X F, Peng Y, Wang Z B, Yan Y S. Microporous Mesoporous Mater., 2016, 230:49.
[78] Elyassi B, Jeon M Y, Tsapatsis M, Narasimharao K, Basahel S N, Al-Thabaiti S. AlChE J., 2016, 62(2):556.
[79] Kita T, Nishimoto S, Matsuda M, Miyake M. J. Am. Ceram. Soc., 2009, 92(12):3074.
[80] Grahn M, Lobanova A, Holmgren A, Hedlund J. Chem. Mater., 2016, 20(19):6270.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[15] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.