中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 797-808 DOI: 10.7536/PC171022 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Electrochemical Aptasensor for Detection of Ochratoxin A

Yanqun Shan, Xiaoying Wang*   

  1. Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81302472).
PDF ( 483 ) Cited
Export

EndNote

Ris

BibTeX

Ochratoxin A (OTA) is a toxic secondary metabolite of small molecular weight mainly produced by Aspergillus and Penicillium species, which are widely found in food, agricultural products and animal feed. It has strong hepatotoxicity, nephrotoxicity, teratogenic and mutagenic effects, and is also a class ⅡB carcinogens. In view of OTA's universality and harmfulness, the present situation of the commonly used detection methods of OTA is summarized and compared in this paper. Specifically, the application of new electrochemical aptasensor in OTA detection is mainly described. OTA electrochemical aptasensors are divided into three categories:configuration transformation type, affinity type and hybrid type. Their respective principles, characteristics and the latest research progress are discussed in detail. Furthermore, the summary of the future directions and the potential applications are given, which provides reference for the further research and application of OTA.
Contents
1 Introduction
2 Traditional detection technology of OTA
3 Electrochemical aptasensor for OTA
3.1 Configuration conversion type electrochemical aptasensor
3.2 Affinity electrochemical aptasensor
3.3 Hybrid type electrochemical aptasensor
4 Conclusion and outlook

CLC Number: 

[1] Fromme H, Gareis M, Völkel W, Gottschalk C. Int. J. Hyg.Environ. Health, 2016, 219(2):143.
[2] De Ruyck K, de Boevre M, Huybrechts I, de Saeger S. Mutat Res., Rev. Mutat. Res., 2015, 766:32.
[3] Chauhan R, Singh J, SachdevT, Basu T, Malhotra B D. Biosens. Bioelectron., 2016, 81(Supplement C):532.
[4] Clarke R, Connolly L, Frizzell C, Elliott C T. Toxicol. Lett., 2015, 238(1):54.
[5] Flores-Flores M E, Lizarraga E, López de Cerain A, González-Peñas E. Food Control, 2015, 53(Supplement C):163.
[6] Cagnazzo C, Campora S, Ferretti E, Arizio F, Marchesi E. Journal of Thoracic Oncology, 2017, 12(1):S1441.
[7] Commission Regulation (EU) No. 594/2012 of 5 July 2012 Amending Regulation (EC) 1881/2006 as Regards the Maximum Levels of the Contaminants Ochratoxin A, Non Dioxin-Like PCBs and Melamine in Foodstuffs.
[8] GB 2761-2017食品中真菌毒素限量. 中华人民共和国国家标准.(GB 2761-2017, Limit of mycotoxins in foods. NationalStandards of the People's Republic of China)
[9] Europeancommission. Commission Recommendation 2006/576/EC on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding.2006-08-17.
[10] GB 13078.2-2006饲料卫生标准:饲料中赭曲霉毒素A和玉米赤霉烯酮的允许量. 中华人民共和国国家标准.(GB 13078.2-2006, Feed Hygiene Standards:Allowable Amounts of Ochratoxin A and Zearalenone in feed. Standards of the People's Republic of China)
[11] Teixeira T R, Hoeltz M, Einloft T C, Dottori H A,Manfroi V, Noll I B. Food Addit. Contam. Part B, 2011, 4(4):289.
[12] Andrade M A, Lancas F M. J. Chromatogr. A, 2017, 1493:41.
[13] Giacomo L, Michele V, Guido F, Danilo M, Luigi I, Valentina M. MethodsX, 2016, 3:171.
[14] Zhang Y, Wang L, Shen X, Wei X, Huang X, Liu Y, Sun X, Wang Z, Sun Y, Xu Z. J. Agric. Food Chem., 2017, 65(23):4830.
[15] Zhang M, Yan L, Huang Q, Bu T, Yu S, Zhao X, Wang J, Zhang D. Food Control, 2018, 84(Supplement C):215.
[16] Xu J, Li W, Liu R, Yang Y, Lin Q X, Xu J J, Shen P, Zheng Q, Zhang Y, Han Z F, Li J L, Zheng T S. Sens. Actuators B, 2016, 232:577.
[17] Karczmarczyk A, Haupt K, Feller K H. Talanta, 2017, 166(Supplement C):193.
[18] Liang Y, Huang X, Yu R, Zhou Y, Xiong Y. Anal. Chim. Acta, 2016, 936:195.
[19] Crivianu-Gaita V, Thompson M. Biosens. Bioelectron.,2016, 85:32.
[20] Wang X Y, Dong P, Yun W, Xu Y, He P G, Fang Y Z. Biosens. Bioelectron., 2009, 24(11):3288.
[21] Wang X Y, Dong P, He P G, Fang Y Z. Anal. Chim. Acta, 2010(658):128.
[22] Citartan M, Gopinath S C, Tominaga J, Tan S C, Tang T H. Biosens. Bioelectron., 2012, 34(1):1.
[23] Ruscito A, Smith M, Goudreau D N, DeRosa M C. J. AOAC Int., 2016, 99(4):865.
[24] Cruz-Aguado J A, Penner G.J. Agric. Food Chem., 2008, 56(22):10456.
[25] Barthelmebs L, Jonca J, Hayat A. Food Control, 2011, 22(5):737.
[26] McKeague M, Velu R, Hill K, Bardoczy V, Meszaros T, de Rosa M C. Toxins, 2014,6(8):2435.
[27] Ha T H. Toxins, 2015, 7(12):5276.
[28] Alam A U, Qin Y, Howlader M M R, Hu N X, Deen M J.Sens. Actuators B, 2018, 254(Supplement C):896.
[29] Rapini R, Marrazza G. Bioelectrochemistry, 2017, 118(Supplement C):47.
[30] Catanante G, Mishra R K, Hayat A, Marty J L. Talanta, 2016, 153:138.
[31] Cheng L, Qu H, Teng J, Yao L, Xue F, Chen W. Food Science and Human Wellness, 2017, 6(2):70.
[32] Tong P, Zhang L, Xu J J, Chen H Y. Biosens. Bioelectron., 2011, 29(1):97.
[33] Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W. Anal. Chim. Acta, 2012, 753:27.
[34] Prieto-Simon B, Samitier J. Anal. Chem., 2014, 86:1437.
[35] Wang C, Qian J, An K, Huang X, Zhao L, Liu Q, Hao N Z Q,Wang K. Biosens. Bioelectron., 2017, 89(Part 2):802.
[36] Sun A L, Zhang Y F, Sun G P, Wang X N, Tang D. Biosens. Bioelectron., 2017, 89(Part 1):659.
[37] Zhang J, Chen J, Zhang X, Zeng Z, Chen M, Wang S. Electrochem. Commun., 2012, 25:5.
[38] Xie S, Chai Y, Yuan Y, Bai L, Yuan R.Biosens. Bioelectron., 2014, 55:324.
[39] Tong P, Zhao W W, Zhang L, Xu J J, Chen H Y.Biosens. Bioelectron., 2012, 33(1):146.
[40] Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju S B, Chen W. Anal. Chem., 2013, 85(22):10842.
[41] Loo A H, Bonanni A, Pumera M. ChemElectroChem, 2015, 2(5):743.
[42] Castillo G, Lamberti I, Mosiello L, Hianik T. Electroanalysis, 2012, 24(3):512.
[43] Evtugyn G, Porfireva A, Sitdikov R, Evtugyn V, Stoikov I, Antipin I, Hianik T. Electroanalysis, 2013, 25(8):1847.
[44] Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T. Sensors, 2013, 13(12):16129.
[45] Qian J, Jiang L, Yang X, Yan Y, Mao H, Wang K. Analyst, 2014, 139(21):5587.
[46] Prabhakar N, Matharu Z, Malhotra B D.Biosens. Bioelectron.,2011, 26(10):4006.
[47] Wei M, Zhang W Y. RSC Adv., 2017, 7(46):28655.
[48] Mishra R K, Hayat A, Catanante G, Ocaña C, Marty J L. Anal. Chim. Acta, 2015, 889:106.
[49] Rivas L, Mayorga-Martinez C C, Quesada-Gonzalez D, Zamora-Galvez A, de la Escosura-Muniz A, Merkoci A. Anal. Chem., 2015, 87(10):5167.
[50] Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty J L, Korri-Youssoufi H. Anal. Chim. Acta, 2016, 920:37.
[51] Hayat A, Andreescu S, Marty J L.Biosens. Bioelectron., 2013, 45:168.
[52] Chrouda A, Sbartai A, Baraket A, Renaud L, Maaref A, Jaffrezic-Renault N. Anal. Biochem., 2015, 488(Supplement C):36.
[53] Hayat A, Sassolas A, Marty J L, Radi A E. Talanta, 2013, 103:14.
[54] Barthelmebs L, Hayat A, Limiadi A W, Marty J L, Noguer T.Sens. Actuators B, 2011, 156(2):932.
[55] Bonel L, Vidal J C, Duato P, Castillo J R.Biosens. Bioelectron., 2011, 26(7):3254.
[56] Mishra R K, Hayat A, Catanante G, Istamboulie G, Marty J L. Food Chem., 2016, 192:799.
[57] Rhouati A, Hayat A, Hernandez D B, Meraihi Z, Munoz R,Marty J L.Sens. Actuators B, 2013, 176:1160.
[58] Bulbul G, Hayat A, Andreescu S. Nanoscale, 2015, 7(31):13230.
[59] Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J. Microchim. Acta, 2017, 184(3):863.
[60] Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S.Biosens. Bioelectron., 2010, 26(2):710.
[61] Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K. Anal. Chim. Acta, 2014, 806(Supplement C):128.
[62] Yang X, Qian J, Jiang L, YanY, Wang K, Liu Q, Wang K. Bioelectrochemistry, 2014, 96:7.
[63] Huang K J, Shuai H L, Chen Y X. Sens. Actuators B, 2016, 225(Supplement C):391.
[64] Hao N, Jiang L, Qian J, Wang K.J. Electroanal. Chem., 2016, 781:332.
[65] Abnous K, Danesh N M, Alibolandi M. Microchim. Acta, 2017, 184(4):1151.
[66] Tan Y, Wei X F, Zhang Y, Wang P L, Qiu B, Guo L H, Lin Z Y, Yang H H. Anal. Chem., 2015, 87(23):11826.
[67] Liu C, Guo Y, Luo F, Rao P, Fu C, Wang S. Food Analytical Methods, 2017, 10(6):1982.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*. The Application of DNA Biosensor Based on Conjugated Polymers [J]. Progress in Chemistry, 2015, 27(12): 1799-1807.
[3] Liang Miao, Liu Rui, Su Rongxin, Qi Wei, Wang Libing, He Zhimin. Aptamer-Based Sensing Technology Towards Food Safety Analysis [J]. Progress in Chemistry, 2012, 24(07): 1378-1387.
[4] Wu Cuichen, Hu Jia, Zou Yuan, Wang Chi, Liu Jie, Yang Chaoyong. Application of Aptamers in Biomedicine [J]. Progress in Chemistry, 2010, 22(08): 1518-1530.
[5] . Aptamer-Nanoparticle-Based Optical Probes [J]. Progress in Chemistry, 2010, 22(0203): 489-499.
[6] Qu Feng Liu Yun Ren Xiaomin Zhao Xinying Zhang Jinghua. Application of Capillary Electrophoresis in Aptamers Study and Aptamers Selection [J]. Progress in Chemistry, 2009, 21(0708): 1576-1582.
[7] . Aptamer-Based Biosensor [J]. Progress in Chemistry, 2009, 21(04): 732-738.
[8] . Aptamer-Based Electrochemical Biosensors [J]. Progress in Chemistry, 2009, 21(04): 724-731.
[9] Xie Hayan|Chen Xuechai,Deng Yulin**. Advance in Aptamer Research [J]. Progress in Chemistry, 2007, 19(06): 1026-1033.