中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 753-764 DOI: 10.7536/PC171012 Previous Articles   Next Articles

• Review •

Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing

Ting Wang1, Rui Xue1, Yuli Wei1,2, Mingyue Wang1, Hao Guo1, Wu Yang1*   

  1. 1. College of Chemistry and Chemical Engineering, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environment Related Polymer Materials of Ministry of Education, Northwest Normal University, Lanzhou 730070, China;
    2. College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21665024).
PDF ( 1776 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks (COFs) are porous compounds with periodic topology structures in which the organic building units are linked by covalent bonds. As a new type of crystalline porous organic materials with multiple advantages, such as low density, large surface area, porosity, good crystallinity, high stability, designable structural units and so on, they have won more and more attention of scientists and been widely applied in many fields including gas adsorption and separation, optoelectronic device, catalysis, drug delivery, energy storage, chemical sensing and chromatographic separation. In the present paper, development and application advances of COFs materials are reviewed in outline, the burning issues concerning the applications are summarized and their possible development trends are also prospected.
Contents
1 Development of COFs materials
2 Applications of COFs materials
2.1 Storage and separation of gas
2.2 Catalysis
2.3 Fluorescent sensing
2.4 Other applications
3 Conclusion

CLC Number: 

[1] Jiang J X, Yu J H, Corma A. Angew. Chem. Int. Ed., 2010, 49:3120.
[2] Sharma Y, Gode F. J. Chem. Eng. Data, 2010, 55:3991.
[3] Rowsell J L C, Yaghi O M. Micropor. Mesopor. Mater., 2004, 73:3.
[4] Côét A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310:1166.
[5] Xu S Q, Zhan T G, Wen Q, Pang Z F, Zhao X. ACS Macro Lett., 2016, 5:99.
[6] Ma Y X, Li Z J, Wei L, Ding S Y, Zhang Y B, Wang W. J. Am. Chem. Soc., 2017, 139:4995.
[7] Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48:3053.
[8] Hunt J R, Doonan C J, Levangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130:11872.
[9] Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133:11478.
[10] Uribe-Romo F J, Hunt J R, Furukawa H, Klock C, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131:4570.
[11] Jackson K T, Reich T E, El-Kaderi H M. Chem. Commun., 2012, 48:8823.
[12] Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47:3450.
[13] Xue R, Guo H, Wang T, Wang X, Ai J B, Yue L G, Wei Y L, Yang W. Mater. Lett., 2017, 209:171
[14] Wu K Y, Guo J, Wang C C. Chem. Mater., 2014, 26:6241.
[15] Liras M, Iglesias M, Sánchez F. Macromolecules, 2016, 49:1666.
[16] Yuan K, Guo-Wang P Y, Hu T, Shi L, Zeng R, Forster M, Pichler T, Chen Y W, Scherf U. Chem. Mater., 2015, 27:7403.
[17] Jin E, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357:673.
[18] Liu X H, Guan C Z, Ding S Y, Wang W, Yan H J, Wang D, Wan L J. J. Am. Chem. Soc., 2013, 135:10470.
[19] Zeng Y F, Zou R Y, Luo Z, Zhang H C, Yao X, Ma X, Zou R Q, Zhao Y L. J. Am. Chem. Soc., 2015, 137:1020.
[20] Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138:4710.
[21] Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42:548.
[22] Daiz U, Corma A. Coord.Chem. Rev., 2016, 311:85.
[23] Mendoza-Cortés J L, Han S S, Furukawa S, Yaghi O M, Goddard W A. J. Phys. Chem. A, 2010, 114:10824.
[24] Pramudya Y, Mendoza-Cortes J L. J. Am. Chem. Soc., 2016, 138:15204.
[25] Choi S, Drese J H, Jones C W. ChemSusChem, 2009, 2:796.
[26] Babarao R, Jiang J W. Energy Environ. Sci., 2008, 1:139.
[27] Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131:8875.
[28] Kahveci Z, Islamoglu T, Shar G A, Ding R S, El-Kader H M. CrystEngComm., 2013, 15:1524.
[29] Lan J, Cao D, Wang D, Smit B. ACS Nano, 2010, 4:4225.
[30] Zhao Y, Yao K X, Teng B, Zhang T, Han Y. Energy Environ.Sci., 2013, 6:3684.
[31] Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134:19524.
[32] Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. Chem. Commun., 2015, 51:12178.
[33] Kaleeswaran D, Vishnoi P, Murugavel R. J. Mater. Chem. C, 2015, 3:7159.
[34] Gomes R, Bhanja P, Bhaumik A. Chem. Commun., 2015, 51:10050.
[35] Deblase C R, Dichtel W R. Macromolecules, 2016, 49:5297.
[36] Huang N, Chen X, Krishna R, Jiang D. L. Angew. Chem. Int. Ed., 2015, 127:3029.
[37] Huang N, Krishna R, Jiang D. J. Am. Chem. Soc., 2015, 137:7079.
[38] Qlajire A A. J. CO2 Utilization, 2017, 17:137.
[39] Klontzas E, Tylianakis E, Froudakis G E. Nano Lett., 2010, 10:452.
[40] Li Y, Yang R T. AIChE J., 2007, 54:269.
[41] Kim D, Jung D H, Kim K H, Guk H, Han S S, Choi K, Choi S H. J. Phys. Chem. C, 2011, 116:1479.
[42] Assfour B, Seifert G. Chem. Phys. Lett., 2010, 489:86.
[43] Ke Z P, Cheng Y Y, Yang S Y, Li F, Ding L F. Int. J. Hydrogen Energy, 2017,42:11461.
[44] Xia L Z, Wang F L, Liu Q. Mater. Lett., 2016, 162:9.
[45] Yu J T, Chen Z, Sun J, Huang Z H, Zheng Q Y. J. Mater. Chem., 2012, 22:5369.
[46] Babu K S, Hyunchul O, Michael H, Daniel E, Christian W. Chem. Eur. J., 2012, 18:10848.
[47] Mendoza-Cortes J L, Goddard W A, Furukawa H, Yaghi O M. J. Phys. Chem. Lett., 2012, 3:2671.
[48] Kalidindi S B, Fischer R A. Phys. Status. Solidi., 2013, 250:1119.
[49] Mendoza-Cortes J L, Pascal T A, Goddard W A. J. Phys. Chem. A, 2011, 115:13852.
[50] Zhao J, Yan T. RSC Adv., 2014, 4:15542.
[51] Frenkel D, Smit B. Understanding Molecular Simulation:From Algorithms to Applications(2nd ed). Califonia:Elsevier, 2002. 66.
[52] Hu J, Zhao J, Yan T. J. Phys. Chem. C, 2015, 119:2010.
[53] Wu M X, Yang Y W. Chin. Chem. Lett., 2017, 28:1135.
[54] Lan J H, Cao D P, Wang W C. Langmuir, 2010, 26:220.
[55] Doonan C J, Tranchemontagne D J, Glover T G, Hunt J R, Yaghi O M. Nat. Chem., 2010, 2:235.
[56] Tong M M, Yang Q Y, Zhong C L. Micropor. Mesopor. Mater., 2015, 210:142.
[57] Kang Z X, Peng Y W, Qian Y H, Yuan D Q, Addicoat M A, Heine T, Hu Z G, Tee L, Guo Z G, Zhao D. Chem. Mater., 2016, 28:1277.
[58] Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R, J.Am. Chem. Soc. 2013, 135:5328.
[59] Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015, 6:6786.
[60] Fu J R, Das S, Xing G L, Ben T, Valtcheva V, Qiu S L. J. Am. Chem. Soc., 2016, 138:7673.
[61] Biswal B P, Chaudhari H D, Banerjee R, Kharul U K. Chem. Eur. J., 2016, 22:4695.
[62] Wang Y, Li J P, Yang Q Y, Zhong C L. ACS Appl. Mater. Interf., 2016, 8:8694.
[63] Yin Z J, Xu S Q, Zhan T G, Qi Q Y, Wu Z Q, Zhao X. Chem. Commun., 2017, 53:1.
[64] Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem., 2014, 126:2922.
[65] 付先彪(Fu X B),喻桂朋(Yu G P).化学进展(Progress in Chemistry), 2016, 28:1006.
[66] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[67] Liu J L, Hu Y J, Cao J J. Catal. Commun., 2015, 66:91.
[68] Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irleb S, Jiang D L. Chem. Commun., 2014, 50:1292.
[69] Hou Y X, Zhang X M, Sun J S, Lin S, Qi D D, Hong R R, Li D Q, Xiao X, Jiang J Z. Micropor. Mesopor. Mater., 2015,214:108.
[70] Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7:905.
[71] Wang X R, Han X, Zhang J, Wu X W, Liu Y, Cui Y. J. Am. Chem. Soc., 2016, 138:12332.
[72] Dong B, Wang L Y, Zhao, Ge R L, Song X D, Wang Y, Gao Y N. Chem. Commun., 2016, 52:7082.
[73] Sun Q, Aguila B, Perman J, Nguyen N, Ma S Q. J. Am. Chem. Soc., 2016, 138:15790.
[74] Li H, Pan Q Y, Ma Y C, Guan X Y, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138:14783.
[75] Lin G Q, Ding H M, Chen R F, Peng Z K, Wang B S, Wang C. J. Am. Chem. Soc., 2017, 139:8705.
[76] Miyaura N, Suzuki A. Chem. Rev., 1995,95:2457.
[77] Amatore C, Jutand A, M'Barki M A. Organometallics, 1992, 11:3009.
[78] Amatore C, Jutand A, Suarez A. J. Am. Chem. Soc., 1993,115:9531.
[79] Pachfule P, Panda M K, Kandambeth S, Shivaprasad S M, Díaz D D, Banerjee R. J. Mater. Chem. A, 2014, 2:7944.
[80] Leng W G, Peng Y S, Zhang J Q, Lu H, Feng X, Ge R L, Dong B, Wang B, Hu X P, Gao Y N. Chem.-Eur. J., 2016, 22:9087.
[81] Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5:2789.
[82] Mu M M, Wang Y W, Qin Y T, Yan X L, Li Y, Chen L G. ACS Appl. Mater. Interf., 2017, 9:22856.
[83] Thote J, Aiyappa H B, Deshpande A, Díaz Díaz D, Kurungot S, Banerjee R. Chem. Eur. J., 2014, 20:15961.
[84] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47:8826.
[85] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2009, 48:5439.
[86] Zhang W, Qiu L, Yuan Y, Xie A, Shen Y, Zhu J. J. Hazard. Mater., 2012, 221/222:147.
[87] Zhang Y, Shen X, Feng X, Xia H, Mu Y, Liu X. Chem. Commun., 2016, 52:11088.
[88] Li Z, Zhang Y, Xia H, Mu Y, Liu X. Chem. Comm., 2016, 52:6613.
[89] 丁三元(Ding S Y). 兰州大学博士论文(Doctoral Dissertation of Lanzhou University), 2014.
[90] Ding S, Dong M, Wang Y, Chen Y, Wang H, Su C, Wang W. J. Am. Chem. Soc., 2016, 138:3031.
[91] Zhang C L, Zhang S M, Yan Y H, Xia F, Huang A N, Xian Y Z. ACS Appl. Mater. Interf., 2017, 9:13415.
[92] Wang T, Xue R, Chen H Q, Shi P L, Lei X, Wei Y L, Guo H, Yang W. New J. Chem., 2017, 41:14272.
[93] Lin G, Ding H, Yuan D, Wang B, Wang C. J. Am. Chem. Soc., 2016,138:3302.
[94] Xue R, Guo H, Wang T, Gong L, Wang Y N, Ai J B, Huang D D, Chen H Q, Yang W. Anal. Methods, 2017, 9:3737.
[95] Xie Y, Ding S, Liu J, Wang W, Zheng Q. J. Mater. Chem. C, 2015, 3:10066.
[96] Peng Y W, Huang Y, Zhu Y H, Chen B, Wang L Y, Lai Z C, Zhang Z C, Zhao M T, Tan C L, Yang N L, Shao F W, Han Y, Zhang H. J. Am. Chem. Soc., 2017, 139:8698.
[97] Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem., 2011, 123:1325.
[98] Feng X, Liu L L, Honsho Y, Saeki A, Seki S, Irle S, Dong Y P, Nagai A, Jiang D L. Angew. Chem., 2012, 51:2618.
[99] Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T. Angew. Chem., 2013, 125:2992.
[100] Koo B T, Berard P G, Clancy P. J. Chem. Theory Comput., 2015, 11:1172.
[101] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Li Z Y, Wang L H, Ma X L, Chen Q H, Zhang Z J, Xiang S C. J. Am. Chem. Soc., 2015, 137:913.
[102] Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. Chem. Eur. J., 2014, 20:14614.
[103] Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6:7786.
[104] Jin S B, Supur M, Addicoat M, Furukawa K, Chen L, Nakamura T, Fukuzumi S, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137:7817.
[105] Hao L, Ning J, Luo B, Wang B, Zhang Y B, Tang Z H, Yang J H, Thomas A, Zhi L J. J. Am. Chem. Soc., 2015, 137:219.
[106] Zha Z Q, Xu L R, Wang Z K, Li X G, Pan Q M, Hu P G, Lei S B. ACS Appl. Mater. Interf., 2015, 7:17837.
[107] Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Angew. Chem., 2015, 127:1.
[108] Mulzer C R, Shen L X, Bisbey R P, McKone J R, Zhang N, Abruñ H D, Dichtel W R. ACS Cent. Sci. 2016, 2:667.
[109] Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137:8352.
[110] Bai L Y, Phua S Z F, Lim W Q, Jana A, Luo Z, Tham H J P, Zhao L Z, Gao Q, Zhao Y L. Chem. Commun., 2016,52:4128.
[111] Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28:8749.
[112] Mitra S, Sasmal H S, Kundu T, Kandambeth S, Illath K, Díaz D D, Banerjee R. J. Am. Chem. Soc., 2017, 139:4513.
[113] Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid Interf. Sci., 2015, 437:211.
[114] Wu M X, Chen G, Ma J T, Liu P, Jia Q. Talanta, 2016, 161:350.
[115] Wu M X, Chen G, Liu P, Zhou W H, Jia Q. J. Chromatogr. A, 2016, 1456:34.
[116] Chen Y L, Chen Z L Talanta, 2017, 165:188.
[117] Bao T, Tang P X, Kong D Y, Mao Z K, Chen Z L. J. Chromatogr. A, 2016, 1445:140.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.