中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 314-324 DOI: 10.7536/PC171007 Previous Articles   

• Review •

Preparation of 5-Hydroxymethylfurfural from Glucose

Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*   

  1. College of Energy, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of High-Valued Conversion Technology of Agricultural Biomass, Xiamen University, Xiamen 361102, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21506177, 21676223), the Fujian Provincial Development and Reform Commission, China(No. 2015489), the Fundamental Research Funds for the Central Universities(No.20720160077, 20720160087, 20720170062), the Natural Science Foundation of Fujian Province of China(No.2016J01077, 2015J05034), and the Education Department of Fujian Province(No. JZ160398).
PDF ( 1893 ) Cited
Export

EndNote

Ris

BibTeX

Biomass derived 5-hydroxymethylfurfural(HMF) has emerged as an important and versatile platform compound containing furan, hydroxymethyl and aldehyde groups to realize the goal for production of several high value added products, such as levulinic acid, 2,5-dimethylfuran, 2,5-furan dicarboxylic acid, 2,5-furan dimethanol, γ-valerolalactone, 5-aminolevulinic acid, which could be served as biofuels, fuel additives, bulk polymer monomers, chemicals and pharmaceuticals. Moreover, glucose is a bulk six-carbon monosaccharide from cellulose by hydrolyzation, and the preparation of HMF from glucose is one of the most effective and promising routes to maximize the utilization of sustainable biomass resources. In this review, focus is primarily put on the recent advances of systematically characterization on catalysts of HMF production from glucose for its activity, stability and application prospect. Then, the various solvent systems used in HMF production in recent years, such as single-phase solvents, biphasic solvents, ionic liquids and deep eutectic solvents, are reviewed and discussed. Finally, the future research directions such as an innovative catalyst, deep eutectic sol-vents are proposed, which might be helpful for researchers.
Contents
1 Introduction
2 Catalysts
2.1 Homogeneous catalysts
2.2 Heterogeneous catalysts
3 Reaction solvents
3.1 Single-phase solvents
3.2 Biphasic solvents
3.3 Ionic liquids
3.4 Deep eutectic solvents
4 Conclusion

CLC Number: 

[1] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6):2411.
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9):4044.
[3] Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115(21):11559.
[4] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9):1493.
[5] Wang J J, Xi J X, Wang Y Q. Green Chem., 2015, 17(2):737.
[6] Kiermayer J. Chem. Ztg, 1895, 19:1003.
[7] Düll G. Chem. Ztg, 1895, 19:216.
[8] Van Enenstein W, Blanksma J. Chem. Weeklad, 1909, 6:717.
[9] Mascal M, Nikitin E B. Angew. Chem. Int. Ed., 2008, 47(41):7924.
[10] De S, Dutta S, Saha B. ChemSusChem, 2012, 5(9):1826.
[11] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147):982.
[12] Rosatella A A, Simeonov S P, Frade R F, Afonso C A. Green Chem., 2011, 13(4):754.
[13] Ståhlberg T, Fu W J, Woodley J M, Riisager A. ChemSusChem, 2011, 4(4):451.
[14] Wang H L, Kong Q Q, Wang Y X, Deng T S, Chen C M, Hou X L, Zhu Y L. ChemCatChem, 2014, 6(3):728.
[15] Hu Z, Liu B, Zhang Z H, Chen L Q. Ind. Crops Prod., 2013, 50:264.
[16] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14(2):509.
[17] Choudhary V, Mushrif S H, Ho C, Anderko A, Nikolakis V, Marinkovic N S, Frenkel A I, Sandler S I, Vlachos D G. J. Am. Chem. Soc., 2013, 135(10):3997.
[18] Loerbroks C, van Rijn J, Ruby M P, Tong Q, Schüth F, Thiel W. Chem. -Eur. J., 2014, 20(38):12298.
[19] Bhaumik P, Dhepe P L. Catal. Rev., 2016, 58(1):36.
[20] Yang Y, Hu C W, Abu-Omar M M. J. Mol. Catal. A:Chem., 2013, 376:98.
[21] Sarwono A, Man Z, Muhammad N, Khan A S, Hamzah W S W, Rahim A H A, Ullah Z, Wilfred C D. Ultrason. Sonochem., 2017, 37:310.
[22] Aida T M, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. J. Supercrit. Fluids, 2007, 40(3):381.
[23] Qi X H, Watanabe M, Aida T M, Smith R L. Catal. Commun., 2008, 9(13):2244.
[24] Qi J, Lv X Y. Chin. J. Chem. Eng., 2008, 16(6):890.
[25] Cole-Hamilton D J. Science, 2003, 299(5613):1702.
[26] Li M H, Li W Z, Lu Y J, Jameel H, Chang H M, Ma L L. RSC Adv., 2017, 7(24):14330.
[27] Pagan-Torres Y J, Wang T F, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6):930.
[28] Eminov S, Brandt A, Wilton-Ely J D, Hallett J P. PLoS One, 2016, 11(10):e0163835.
[29] Teng J J, Ma H, Wang F R, Wang L F, Li X H. Bioresources, 2016, 11(1):2152.
[30] Xu Z L, Wang X Y, Shen M Y, Du C H. Chem. Pap., 2016, 70(12):1649.
[31] Zhou J X, Xia Z, Huang T Y, Yan P F, Xu W J, Xu Z W, Wang J J, Zhang Z C. Green Chem., 2015, 17(8):4206.
[32] Li J J, Ma Y B, Wang L, Song Z, Li H P, Wang T F, Li H Y, Eli W. Catalysts, 2015, 6(1):1.
[33] Di Serio M, Tesser R, Lu P M, Santacesaria E. Energy Fuels, 2007, 22(1):207.
[34] Nasirudeen M B, Hailes H C, Evans J R G. Curr. Org. Synth., 2017, 14(4):596.
[35] Yan H P, Yang Y, Tong D M, Xiang X, Hu C W. Catal. Commun., 2009, 10(11):1558.
[36] 于世涛(Yu S T), 刘福胜(Liu F S). 固体酸与精细化工(Solid Acid and Fine Chemical Industry), 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006. 23.
[37] Wang Y P, Liu Y H, Yang L, Ruan R, Wen P W, Wan Y Q. Synth. React. Inorg. Met.-Org. Chem., 2016, 46(2):177.
[38] García-Sancho C, Fúnez-Núñez I, Moreno-Tost R, Santamaría-González J, Pérez-Inestrosa E, Fierro J L G, Maireles-Torres P. Appl. Catal. B-Environ., 2017, 206:617.
[39] Jiao H F, Zhao X L, Lv C X, Wang Y J, Yang D J, Li Z H, Yao X D. Sci. Rep., 2016, 6.
[40] Martínez J J, Silva D F, Aguilera E X, Rojas H A, Brijaldo M H, Passos F B, Romanelli G P. Catal. Lett., 2017, 147(7):1765.
[41] Guo J, Zhu S H, Cen Y L, Qin Z F, Wang J G, Fan W B. Appl. Catal. B-Environ., 2017, 200:611.
[42] Yue C C, Li G N, Pidko E A, Wiesfeld J J, Rigutto M, Hensen E J. ChemSusChem, 2016, 9(17):2421.
[43] Su Y, Chang G G, Zhang Z G, Xing H B, Su B G, Yang Q W, Ren Q L, Yang Y W, Bao Z B. AIChE J., 2016, 62(12):4403.
[44] Yabushita M, Li P, Islamoglu T, Kobayashi H, Fukuoka A, Farha O K, Katz A. Ind. Eng. Chem. Res., 2017, 56(25):7141.
[45] Chen D W, Liang F B, Feng D X, Xian M, Zhang H B, Liu H Z, Du F L. Chem. Eng. J., 2016, 300:177.
[46] Li W Z, Zhang T W, Xin H S, Su M X, Ma L L, Jameel H, Chang H M, Pei G. RSC Adv., 2017, 7(44):27682.
[47] Thombal R S, Jadhav V H. Appl. Catal., A, 2015, 499:213.
[48] Jiménez-Morales I, Santamaría-González J, Jiménez-López A, Maireles-Torres P. Fuel, 2014, 118:265.
[49] Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jimenez-Lopez A. Appl. Catal. B-Environ., 2015, 164:70.
[50] Xu Q, Zhu Z, Tian Y K, Deng J, Shi J, Fu Y. Bioresources, 2013, 9(1):303.
[51] Moreno-Recio M, Santamaría-González J, Maireles-Torres P. Chem. Eng. J., 2016, 303:22.
[52] Wang P, Ren L H, Lu Q Y, Huang Y B. Chem. Eng. Commun., 2016, 203(11):1507.
[53] Liu H, Wang H W, Li Y, Yang W, Song C H, Li H M, Zhu W S, Jiang W. RSC Adv., 2015, 5(12):9290.
[54] Ravasco J M J M, Coelho J A S, Simeonov S P, Afonso C A M. RSC Adv., 2017, 7(13):7555.
[55] Lu Y M, Li H, He J, Liu Y X, Wu Z B, Hu D Y, Yang S. RSC Adv., 2016, 6(16):12782.
[56] Liu B, Ba C, Jin M M, Zhang Z H. Ind. Crops Prod., 2015, 76:781.
[57] Wang J J, Ren J W, Liu X H, Xi J X, Xia Q N, Zu Y H, Lu G Z, Wang Y Q. Green Chem., 2012, 14(9):2506.
[58] Guo X Q, Zhu C H, Guo F. Bioresources, 2016, 11(1):2457.
[59] Gascon J, Corma A, Kapteijn F, Llabrés i Xamena F X. ACS Catal., 2013, 4(2):361.
[60] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38(5):1450.
[61] Valvekens P, Vermoortele F, De Vos D. Catal. Sci. Technol., 2013, 3(6):1435.
[62] Herbst A, Janiak C. New J. Chem., 2016, 40(9):7958.
[63] Mondloch J E, Bury W, Fairen-Jimenez D, Kwon S, DeMarco E J, Weston M H, Sarjeant A A, Nguyen S T, Stair P C, Snurr R Q, Farha O K, Hupp J T. J. Am. Chem. Soc., 2013, 135(28):10294.
[64] Kruse A, Dinjus E. J. Supercrit. Fluids, 2007, 39(3):362.
[65] Shuai L, Luterbacher J. ChemSusChem, 2016, 9(2):133.
[66] Kimura H, Nakahara M, Matubayasi N. J. Phys. Chem. A, 2011, 115(48):14013.
[67] Vasudevan V, Mushrif S H. RSC Adv., 2015, 5(27):20756.
[68] Sun J K, Yuan X D, Shen Y, Yi Y X, Wang B, Xu F, Sun R C. Ind. Crops Prod., 2015, 70:266.
[69] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84(5):339.
[70] Gürbüz E I, Wettstein D S G, Dumesic P J A. ChemSusChem, 2012, 5(2):383.
[71] Román-Leshkov Y, Dumesic J A. Top. Catal., 2009, 52(3):297.
[72] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5):1979.
[73] Wasserscheid P, Keim W. Angew. Chem. Int. Ed., 2000, 39(21):3772.
[74] Rogers R D, Seddon K R. Science, 2003, 302(5646):792.
[75] 胡磊(Hu L), 孙勇(Sun Y), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2012, 24(4):483.
[76] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831):1597.
[77] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50(38):5403.
[78] D'Anna F, Marullo S, Vitale P, Rizzo C, Meo P L, Noto R. Appl. Catal. A, 2014, 482(28):287.
[79] Tang X, Zuo M, Li Z, Liu H, Xiong C X, Zeng X H, Sun Y, Hu L, Liu S J, Lei T Z, Lin L. ChemSusChem, 2017, 10(13):2696.
[80] Paiva A, Craveiro R, Aroso I, Martins M, Reis R L, Duarte A R C. ACS Sustain Chem. Eng., 2014, 2(5):1063.
[81] Matsumiya H, Hara T. Biomass Bioenerg., 2015, 72:227.
[82] Zuo M, Le K, Li Z, Jiang Y T, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2017, 99:1.
[83] Liu F, Audemar M, Vigier K D O, Cartigny D, Clacens J M, Gomes M F C, Pádua A A, De Campo F, Jérôme F. Green Chem., 2013, 15(11):3205.
[84] Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B. Green Chem., 2009, 11(12):1948.
[85] Yang J, De Oliveira Vigier K, Gu Y L, Jerome F. ChemSusChem, 2015, 8(2):269.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[3] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[4] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[5] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[6] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[7] Fang Li, He Jinlu. Nonenzymatic Glucose Sensors [J]. Progress in Chemistry, 2015, 27(5): 585-593.
[8] Zhang Yuqi, Yu Jicheng, Shen Qundong, Gu Zhen. Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems [J]. Progress in Chemistry, 2015, 27(1): 11-26.
[9] Zhou Lilong, Wu Tinghua, Wu Ying. Degradation and Conversion of Cellulose in Ionic Liquids [J]. Progress in Chemistry, 2012, 24(08): 1533-1543.
[10] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[11] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[12] Hu Lei, Sun Yong, Lin Lu. Pathways and Mechanisms of Liquid Fuel 2,5-Dimethylfuran from Biomass [J]. Progress in Chemistry, 2011, 23(10): 2079-2084.
[13] Li Yan, Wei Zuojun, Chen Chuanjie, Liu Yingxin. Preparation of 5-hydroxymethylfurfural by Dehydration of Carbohydrates [J]. Progress in Chemistry, 2010, 22(08): 1603-1609.
[14] Huang Shiyong Wang Fuli Pan Lixia. Synthesis of 5-Hydroxymethylfurfural via Dehydration of Fructose [J]. Progress in Chemistry, 2009, 21(0708): 1442-1449.