中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 410-419 DOI: 10.7536/PC170923 Previous Articles   Next Articles

• Review •

Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials

Yijia Shao1, Bin Huang1, Quanbing Liu2*, Shijun Liao1*   

  1. 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
    2. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the State's Key Project of Research and Development Plan of China (No.2016YFB0101201), the Natural Science Foundation of China (No.21476088, U1301245, 21606050), the Natural Science Foundation of the Guangdong Province (No.2014A010105041, 2015A030312007), the Guangdong Provincial Department of Science and Technology(No.2015B010106012), the Educational Commission of Guangdong Province (No.2013CXZDA003), and the Guangzhou Science Technology Innovation Committee(No.2016201604030012).
PDF ( 3115 ) Cited
Export

EndNote

Ris

BibTeX

Ternary nickel cobalt manganese cathode materials are one of the most important cathode materials of lithium ion batteries. Ni-Co-Mn ternary materials have much higher power density than LiFePO4 and lower cost than LiCoO2, so it is becoming the dominant cathode material for power battery. However, there are still some shortcomings of Ni-Co-Mn ternary materials, such as poor stability and rate performance. In recent years, great efforts have been made to improve the materials through exploring new synthesis method and modifying the materials via doping and coating techniques, and some progress has been achieved. In this paper, the latest progress on the synthesis, doping and coating of Ni-Co-Mn ternary materials are introduced. Furthermore, a perspective for the development tendency of Ni-Co-Mn ternary materials is also made.
Contents
1 Introduction
2 Research progress of preparation
2.1 Solid state method
2.2 Coprecipitation method
2.3 Sol-gel method
2.4 Template method
2.5 Hydrothermal method
3 Research progress of coating and doping
3.1 Coating
3.2 Doping
4 Conclusion

CLC Number: 

[1] 陈鹏(Chen P),肖冠(Xiao G),廖世军(Liao S J). 化工进展(Chemical Industry and Engineering Progress), 2016, 35:166.
[2] Tarascon J M, Armand M. Nature, 2001, 414:359.
[3] Deng D. Energy Sci. Eng., 2015, 3:385.
[4] Schipper F, Erickson E M, Erk C, Shin J Y, Chesneau F F, Aurbac D. J. Electrochem. Soc., 2017, 164(1):A6220.
[5] Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Solid State Ionics, 1981, 3/4:171.
[6] Ohzuku T, Ueda A, Nagayama M. J. Electrochem. Soc., 1993, 140:1862.
[7] Bruce P G, Armstrong A R, Gitzendanner R L. J. Mater. Chem., 1999, 9:193.
[8] Ohzuku T, Makimura Y. Chem. Lett., 2001, 642.
[9] Jiang Q, Xu L, Huo J, Zhang H, Wang S. RSC Adv., 2015, 5:75145.
[10] Zheng Z, Guo X D, Chou S L, Hua W B, Liu H K, Dou S X, Yang X S. Electrochim. Acta, 2016, 191:401.
[11] Lin C H, Zhang Y Z, Chen L, Lei Y, Ou J K, Guo Y, Yuan H Y, Xiao D. J. Power Sources, 2015, 280:263.
[12] Park K J, Lim B B, Choi M H, Jung H G, Sun Y K, Haro M, Vicente N, Bisquert J, Garcia B G. J. Mater. Chem. A, 2015, 3:22183.
[13] Liang L W, Hu G R, Cao Y B, Du K, Peng Z D. J. Alloys Compd., 2015, 635:92.
[14] Yang Z H, Lu J B, Bian D C, Zhang W X, Yang X N, Xia J F, Chen G D, Gu H Y, Ma G. J. Power Sources, 2014, 272:144.
[15] Ma G, Li S, Zhang W, Yang Z, Liu S, Fan X, Chen F, Tian Y, Zhang W, Yang S, Li M. Angew. Chem. Int. Ed. Engl., 2016, 55:3667.
[16] Huang Z D, Liu X M, Oh S W, Zhang B A, Ma P C, Kim J K. J. Mater. Chem., 2011, 21:10777.
[17] Huang Z D, Liu X M, Zhang B A, Oh S W, Ma P C, Kim J K. Scripta Mater., 2011, 64:122.
[18] Li J L, Wang X F, Zhao J W, Chen J, Jia T K, Cao C B. J. Power Sources, 2016, 307:731.
[19] Chen Z, Wang J, Chao D, Baikie T, Bai L, Chen S, Zhao Y, Sum T C, Lin J, Shen Z. Sci. Rep., 2016, 6:25771.
[20] Xiong W, Jiang Y, Yang Z, Li D G, Huang Y H. J. Alloys Compd., 2014, 589:615.
[21] Li J L, Cao C B, Xu X Y, Zhu Y Q, Yao R M. J. Mater. Chem. A, 2013, 1:11848.
[22] Wu Y, Cao C, Zhu Y, Li J, Wang L. J. Mater. Chem. A, 2015, 3:15523.
[23] Yang C F, Huang J J, Huang L G, Wang G J. J. Power Sources, 2013, 226:219.
[24] Huang Y, Hou X, Ma S, Zou X, Wu Y, Hu S, Shao Z, Liu X. Ionics, 2015, 21:3151.
[25] Zhang J, Zhong Y, Shi X, Zheng Z, Hua W, Chen Y, Liu W, Zhong B. Chin. J. Chem., 2015, 33:1303.
[26] Peng L L, Zhu Y, Khakoo U, Chen D H, Yu G H. Nano Energy, 2015, 17:36.
[27] Fu F, Xu G L, Wang Q, Deng Y P, Li X, Li J T, Huang L, Sun S G. J. Mater. Chem. A, 2013, 1:3860.
[28] Ryu W H, Lim S J, Kim W K, Kwon H. J. Power Sources, 2014, 257:186.
[29] Xie Y, Gao D, Zhang L L, Chen J J, Cheng S, Xiang H F. Ceram. Int., 2016, 42:14587.
[30] Tan S Y, Wang L, Bian L, Xu J B, Ren W, Hu P F, Chang A M. J. Power Sources, 2015, 277:139.
[31] Lv D, Wang L, Hu P, Sun Z, Chen Z, Zhang Q, Cheng W, Ren W, Bian L, Xu J, Chang A. Electrochim. Acta, 2017, 247:803.
[32] Hu W, Zhang C, Jiang H, Zheng M, Wu Q H, Dong Q. Electrochim. Acta, 2017, 243:105.
[33] Xu Y, Li X H, Wang Z X, Guo H J, Peng W J, Pan W. Electrochim. Acta, 2016, 219:49.
[34] Luo Z M, Sun Y G, Liu H Y. Chin. Chem. Lett., 2015, 26:1403.
[35] Guo X, Cong L N, Zhao Q, Tai L H, Wu X L, Zhang J P, Wang R S, Xie H M, Sun L Q. J. Alloys Compd., 2015, 651:12.
[36] Tao F, Yan X X, Liu J J, Zhang H L, Chen L. Electrochim. Acta, 2016, 210:548.
[37] Wise A M, Ban C, Weker J N, Misra S, Cavanagh A S, Wu Z, Li Z, Whittingham M S, Xu K, George S M, Toney M F. Chem. Mater., 2015, 27:6146.
[38] Han B, Paulauskas T, Key B, Peebles C, Park J S, Klie R F, Vaughey J T, Dogan F. ACS Appl. Mater. Interfaces, 2017, 9:14769.
[39] Shi Y, Zhang M H, Qian D N, Meng Y S. Electrochim. Acta, 2016, 203:154.
[40] Zhao R, Liang J, Huang J, Zeng R, Zhang J, Chen H, Shi G. J. Alloys Compd., 2017, 724:1109.
[41] Yano A, Ueda A, Shikano M, Sakaebe H, Ogumi Z. J. Electrochem. Soc., 2016, 163:A75.
[42] Kong J Z, Wang S S, Tai G A, Zhu L, Wang L G, Zhai H F, Wu D, Li A D, Li H. J. Alloys Compd., 2016, 657:593.
[43] Hou C P, Ma Y, Dong X Z, Geng W C, Zhang B L, Zhang Q Y. J. Alloys Compd., 2016, 656:849.
[44] Cong L, Zhao Q, Wang Z, Zhang Y, Wu X, Zhang J, Wang R, Xie H, Sun L. Electrochim. Acta, 2016, 201:8.
[45] Wu J F, Liu H G, Ye X H, Xia J P, Lu Y, Lin C W, Yu X W. J. Alloys Compd., 2015, 644:223.
[46] Li G Y, Zhang Z J, Wang R N, Huang Z L, Zuo Z C, Zhou H H. Electrochim. Acta, 2016, 212:399.
[47] Gong C X, Lv W X, Qu L M, Bankole O E, Li G H, Zhang R, Hu M, Lei L X. J. Power Sources, 2014, 247:151.
[48] Yang Z G, Guo X D, Xiang W, Hua W B, Zhang J, He F R, Wang K, Xiao Y, Zhong B H. J. Alloys Compd., 2017, 699:358.
[49] Min K, Seo S W, Song Y Y, Lee H S, Cho E. Phys. Chem. Chem. Phys., 2017, 19:1762.
[50] Hu G R, Zhang M F, Liang L W, Peng Z D, Du K, Cao Y B. Electrochim. Acta, 2016, 190:264.
[51] Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y. ACS Appl. Mater. Interfaces, 2016, 8:33546.
[52] Zhang Y, Wang Z B, Yu F D, Que L F, Wang M J, Xia Y F, Xue Y, Wu J. J. Power Sources, 2017, 358:1.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.