中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 14-28 DOI: 10.7536/PC170912 Previous Articles   Next Articles

• Review •

Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis

Lishan Peng, Zidong Wei*   

  1. New Energy Chemical Laboratory, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91534205, 21436003, 21306232).
PDF ( 1517 ) Cited
Export

EndNote

Ris

BibTeX

Along with market competition intensifying, accurately customizing the chemicals that meet the product demand has become the new trend of chemical engineering research. Hydrogen production by water electrolysis is an effective technology to store the intermittent electric power generated by large-scale renewable energy. To achieve high electricity-to-hydrogen conversion efficiency, efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are essentially required. Electrode catalytic materials for water electrolysis have complicated chemical composition and multi-level structure, of which the chemical-physical properties and morphology structure are the main factors that determine the performance of electrolysis of water. In this paper, combining the research works on water electrolysis catalysts of our group, the recent advancements in the area of HER and OER catalysts with emphasis on catalyst design and engineering are reviewed. The catalyst design theories based on reaction mechanism of electrolytic water, catalyst design methodology (including nanoarchitecture, crystal face regulation, support combination, phase adjustment, heteroatom doping, alloying and surface modification) and their applications based on catalytic performance have been introduced in the light of product requirements. According to the development and requirement of chemical product engineering, the key scientific problems and development direction of the catalyst design and product engineering from molecular level to micro-nano structure scale as well as product synthesis and application are further provided.
Contents
1 Introduction
2 Reaction mechanism-oriented catalyst design theory
2.1 Reaction mechanism of electrolytic water
2.2 Reaction mechanism and catalyst design strategy of hydrogen evolution
2.3 Reaction mechanism and catalyst design strategy of oxygen evolution
3 Performance-oriented catalyst design methodology and application
3.1 Design principles of electrocatalyst
3.2 Design strategy based on geometric factor
3.3 Design strategy based on energy factor
4 Industrialization-oriented electrode construction design
4.1 Energy consumption of industrial water electrolysis
4.2 Technical requirements and construction design of industrial electrode
5 Conclusion and outlook

CLC Number: 

[1] Bailera M, Kezibri N, Romeo L M, Espatolero S, Lisbona P, Bouallou C. Int. J. Hydrogen Energ., 2017, 42:13625.
[2] Ahmed A, Al-Amin A Q, Ambrose A F, Saidur R. Int. J. Hydrogen Energ., 2016, 41:1369.
[3] 刘芸(Liu Y). 电源技术(Chinese Journal of Power Sources), 2012, 36:1579.
[4] Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S. Int. J. Hydrogen Energ., 2007, 32:3797.
[5] Kothari R, Buddhi D, Sawhney R L.Renew. Sust. Energ. Rev., 2008, 12:553.
[6] Holladay J D, Hu J, King D L, Wang Y. Catal. Today, 2009, 139:244.
[7] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Prog. Chem.), 2008, 20:778.
[8] Roy A, Watson S, Infield D. Int. J. Hydrogen Energ., 2006, 31:1964.
[9] 刘明义(Liu M Y), 郑建涛(Zheng J T), 徐海卫(Xu H W), 刘冠杰(Liu G J), 曹传钊(Cao C Z). 中国电机工程学会年会(Chinese Electrical Engineering Society), 2013.
[10] Stojic D L, Marceta M P, Sovilj S P, Miljanic S S. J. Power Sources, 2003, 118:315.
[11] Zou X, Zhang Y.Chem. Soc. Rev., 2015, 44, 5148.
[12] Zeng K, Zhang D. Prog. Energ. Comst., 2010, 36:307.
[13] Sheng W C, Gasteiger H A, Shao-Horn Y. J. Electrochem. Soc., 2010, 157:B1529.
[14] Jiao Y, Zheng Y, Jaroniec M T, Qiao S Z. Chem. Soc. Rev., 2015, 44:2060.
[15] Bockris J O M, Potter E C. J. Electrochem. Soc., 1952, 99:169.
[16] Parsons R. Trans. Faraday Soc., 1958, 54:1053.
[17] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. J. Electrochem.Soc., 2005, 152:J23.
[18] Lodi G, Sivieri E, Battisti A D, Trasatti S. J. Appl. Electrochem., 1978, 8:135.
[19] Castelli P, Trasatti S, Pollak F H, O'Grady W E. J. Electroanal. Chem., 1986, 210:189.
[20] Fierro S, Nagel, T, Baltruschat H, Comninellis C. Electrochem. Comm., 2007, 9:1969.
[21] Mehandru S P, Anderson A B. J. Electrochem. Soc., 1989, 136:158.
[22] Apos J, Bockris M. J. Chem. Phys., 1956, 24:817.
[23] Bockris J O M, Otagawa T.J. Phys. Chem., 1983, 87:2960.
[24] Bockris J O M, Otagawa T, Young V.J. Electroanal. Chem., 1983, 150:633.
[25] Rüetschi P, Delahay P. J. Chem. Phys., 1955, 23:556.
[26] Trasatti S. J. Electroanal. Chem., 1980, 111:125.
[27] Hickling A, Hill S. Discuss. Faraday Soc., 1947, 1:236.
[28] Tseung A C C, Jasem S. Electrochim. Acta, 1977, 22:31.
[29] Rasiyah P, Tseung A C C. J. Electrochem. Soc., 1984, 131:803.
[30] 钱宇(Qian Y), 钱吉铮(Qian J Z), 江燕斌(Jiang Y B), 章莉娟(Zhang L J), 纪红兵(Ji H B). 化工进展(Chem. Ind. Eng. Prog.), 2003, 22:217.
[31] Vesborg P C K, Jaramillo T F. RSC Adv., 2012, 2:7933.
[32] Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Int. J. Hydrogen Energ., 1982, 7:405.
[33] Navarro-Flores E, Chong Z W, Omanovic S. J. Mol. Catal.A-Chem., 2005, 226:179.
[34] McKone J R, Sadtler B F, Werlang C A, Lewis N S, Gray H B. ACS Catal., 2013, 3:166.
[35] Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42:2986.
[36] Peng L S, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z D. ACS Catal., 2017, 7:8184.
[37] Mai L Q, Tian X C, Xu X, Chang L, Xu L. Chem. Rev., 2014, 114:11828.
[38] Morales-Guio C G, Stern L A, Hu X. Chem. Soc. Rev., 2014, 43:6555.
[39] Carenco S, Portehault D, Boissiere C, Mezailles N, Sanchez C. Chem. Rev., 2013, 113:7981.
[40] Song F, Hu X L. Nat. Commun., 2014, 5:4477.
[41] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135:10274.
[42] Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13:6222.
[43] Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Energ. Environ. Sci., 2014, 7:2608.
[44] Peng L S, Nie Y, Zhang L, Xiang R, Wang J,Chen H M, Chen K, Wei Z D. ChemCatChem, 2017, 9:1588.
[45] Faber M S, Dziedzic R, Lukowski M A, Kaiser N S, Ding Q, Jin S. J. Am. Chem. Soc., 2014, 136:10053.
[46] Zhang L, Roling T, Wang X, Vara M, Chi M F, Liu J Y, Choi S I, Park J, Herron J A, Xie Z X, Mavrikakis M, Xia Y N. Science, 2015, 349:412.
[47] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316:732.
[48] Fan Z X, Luo Z M, Huang X, Li B, Chen Y, Wang J, Hu Y L, Zhang H. J. Am. Chem. Soc., 2016, 138:1414.
[49] Zhang S, Guo S J, Zhu HY, Su D, SunS H. J. Am. Chem. Soc., 2012, 134:5060.
[50] Strmcnik D S, Tripkovic D V, van der Vliet D, Chang K C, Komanicky V, You H, Karapetrov G, Greeley J, Stamenkovic V R, Markovic N M. J. Am. Chem Soc., 2008, 130:15332.
[51] Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Nat. Chem., 2013, 5:300.
[52] Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X Y, Mao J, Du X W, Hu Z P, Jaroniec M, Qiao S Z. Nat. Commun., 2016, 7:12876.
[53] Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. J. Am. Chem. Soc., 2015, 137:14023.
[54] Hu L H, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130:16136.
[55] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458:746.
[56] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453:638.
[57] Su D, Dou S, Wang G. Sci. Rep., 2014, 4:5767.
[58] Gao R, Zhu J Z, Xiao X L, Hu Z B, Liu J J, Liu X F.J. Phys. Chem. C, 2015, 119:150211043634005.
[59] Su W, For M, Wan G X. Sci. Rep., 2012, 2:924.
[60] Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O'Hare D, Zhang T R. J.Am. Chem. Soc., 2016, 138:6517.
[61] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J. Am. Chem. Soc., 2012, 134:13252.
[62] Chen W F, Wang C H, Sasaki K, Marinkovic N, Xu W, Muckerman J T, Zhu Y, Adzic R R. Energ. Environ. Sci., 2013, 6:943.
[63] Liang Y Y, Li Y G, Wang H L, Dai H J. J. Am. Chem. Soc., 2013, 135, 2013.
[64] 秦瑞杰(Qin R J), 张占男(Zhang Z N), 王宇新(Wang Y X). 化学工业与工程(Chemical Industry and Engineering), 2017, 34:21.
[65] Liu M J, Dong Y Z, Wu Y M, Feng H B, Li J H. Chem. -Eur. J., 2013, 19:14781.
[66] Tsai C, Abild-Pedersen F, Norskov J K. Nano Lett., 2014, 14:1381.
[67] Deng Z H, Li L, Ding W, Xiong K, Wei Z D. Chem. Commun., 2015, 51:1893.
[68] Li D J, Maiti U N, Lim J, Choi D S, Lee W J, Oh Y, Lee G Y, Kim S O. Nano Lett., 2014, 14:1228.
[69] Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nat. Mater., 2011, 10:780.
[70] Yeo S, Bel A T. J. Am. Chem. Soc., 2011, 133:5587.
[71] Yan Y, Xia B Y, Qi X Y, Wang H B, Xu R, Wang J Y, Zhang H, Wang X. Chem. Commun., 2013, 49:4884.
[72] Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Energ. Environ. Sci., 2013, 6:2921.
[73] Xiong K, Li L, Deng Z H, Xia M R, Chen S G, Tan S Y, Peng X J, Duan C Y, Wei Z D. RSC Adv., 2014, 4:20521.
[74] Wu J, Xue Y, Yan X, Yan W S, Cheng Q M, Xie Y. Nano Res., 2012, 5:521.
[75] Wang S, Wang J, Zhu M, Bao X, Xiao B, Su D, Li H, Wang Y. J. Am. Chem. Soc., 2015, 137:15753.
[76] Wan C, Regmi Y N, Leonard B M. Angew. Chem. Int. Ed., 2014, 53:6407.
[77] Wang H T, Lu Z Y, XuS C, Kong D S, Cha J J, Zheng G Y,Hsu P C, Yan K,Bradshaw D, Prinz F B,Cui Y P. Natl. Acad. Sci. U.S.A., 2013, 110:19701.
[78] Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S. J. Am. Chem. Soc., 2014, 136:8504.
[79] Voiry D,Yamaguchi H, LiJ W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, EdaG, Chhowalla M. Nat. Mater., 2013, 12:850.
[80] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv. Mater., 2013, 25:5807.
[81] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:17881.
[82] Seger B, Laursen A B, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2012, 51:9128.
[83] Wang T Y, Zhuo J Q, Du K Z, Chen B B, Zhu Z W, Shao Y H, Li M X. Adv. Mater., 2014, 26:3761.
[84] Morales-Guio C G, Hu X L. Acc. Chem. Res., 2014, 47:2671.
[85] Paseka I.Electrochim. Acta, 1995, 40:1633.
[86] Deng J F, Li H X, Wang W J. Catal. Today, 1999, 51:113.
[87] Joshua M M, J Chance C, Juan F C, Eric J P, Carlos G R, Nathan S L, Raymond E S. Chem. Comm., 2014, 50:11026.
[88] Smith R D, Prevot M S, Fagan R D, Trudel S, Berlinguette C P. J. Am. Chem. Soc., 2013, 135:11580.
[89] Smith R D, Prevot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K, Trudel S, Berlinguette C P. Science, 2013, 340:60.
[90] Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B. Angew. Chem. Int. Ed., 2014, 53:7547.
[91] Jiang W J, Niu S, Tang T, Zhang Q H, Liu X Z, Zhang Y, Chen Y Y, Li J H, Gu L, Wan L J, Hu J S. Angew. Chem. Int. Ed., 2017, 56:6572.
[92] Benck J D, Chen Z B, Kuritzky L Y, Forman A J, Jaramillo T F. ACS Catal., 2012, 2:1916.
[93] Alexander A M, Hargreaves J S J. Chem. Soc. Rev., 2010, 39:4388.
[94] Zhang X, Zhang X, Xu H, Wu Z, Wang H, Liang Y. Adv. Funct. Mater., 2017, 27:1606635.
[95] Peng L S, Shen J J, Zhang L, Wang Y, Xiang R, Li J, Li L, Wei Z D. J. Mater. Chem. A, 2017, DOI:10.1039/C7TA07275A.
[96] Li H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Adv. Funct. Mater., 2016, 26:5590.
[97] Pan Y, Liu Y, Lin Y, Liu C. ACS Appl. Mater. Interfaces, 2016, 8:13890.
[98] Tang C, Zhang R, Lu W, He L, Jiang X, Asiri A M, Sun X. Adv. Mater., 2017, 29.
[99] Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri A M, Sun X, Chen L. ACS Catal., 2016, 7:98.
[100] 吴凯(Wu K). 物理化学学报(Acta Phys-Chim. Sin.), 2016, 32:2819.
[101] Bonde J, Moses P G, Jaramillo T F, Norskov J K, Chorkendorff I. Faraday Discuss., 2008, 140:219.
[102] Zhang K, KimH J, Lee J T, Chang G W, Shi X, Kim W, Ma M, Kong K J, Choi J M, Song M S, Park J H. ChemSusChem, 2014, 7:2489.
[103] Lv X J, She G W, Zhou S X, Li Y M. RSC Adv., 2013, 3:21231.
[104] Sun X, Dai J, Guo Y Q, Wu C Z, Hu F T, Zhao J Y, Zeng X C, Xie Y. Nanoscale, 2014, 6:8359.
[105] Wang H T, Tsai C, Kong D S, Chan K R, Abild-Pedersen F, Norskov J, Cui Y. Nano Res., 2015, 8:566.
[106] Xiong K, Li L, Zhang L, Ding W, Peng L S, Wang Y, Chen S G, Tan S Y, Wei Z D. J. Mater. Chem. A, 2015, 3:1863.
[107] Chen P, Zhou T, Zhang M, Tong Y, Zhong C, Zhang N, Zhang L, Wu C, Xie Y. Adv. Mater., 2017, 29.
[108] Li Q, Han C, Ma X, Wang D, Xing Z, Yang X. J. Mater. Chem. A, 2017,DOI:10.1039/c7ta05188c.
[109] Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y, Li M, Jin S. ACS Catal., 2015, 5:6355.
[110] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2014, 136:1680.
[111] Zhou W J, Hou D M, Sang Y H, Yao S H, Zhou J, Li G Q, Li L G, Liu H, Chen S W. J. Mater. Chem. A, 2014, 2:11358.
[112] 韩庆(Han Q), 魏绪钧(Wei X J), 刘奎仁(Liu K R). 中国有色金属学报(Chin. J. Nonferrous Met.), 2001, 11:158.
[113] 胡伟康(Hu W K), 张允什(Zhang Y S). 功能材料(Journal of Functional Materials), 1995, 456.
[114] Zhang L, Xiong K, Nie Y, Wang X X, Liao J H, Wei Z D. J. Power Sources, 2015, 297:413.
[115] Jaksic M M. Electrochim. Acta, 1984, 29:1539.
[116] Hoor F S, Aravinda C L, Ahmed M F, Mayanna S M. J. Power Sources, 2001, 103:147.
[117] Raj I A. J. Mater. Sci., 1993, 28:4375.
[118] Rosalbino F, Scavino G, Grande M A. J. Electroanal. Chem., 2013, 694:114.
[119] Wang X Q, Su R, Aslan H, Kibsgaard J, Wendt S, Meng L H, Dong M D, Huang Y D, Besenbacher F. Nano Energy, 2015, 12:9.
[120] 李凝(Li N), 高诚辉(Gao C H). 中国稀土学报(J. Chin. Rare Earth Soc.), 2010, 4:442.
[121] Wang T, Wang X J, Liu Y,Zheng J, Li X G.Nano Energy, 2016, 22:111.
[122] 胡琳萍(Hu L P). 重庆大学硕士论文(Master Dissertation of Chongqing University), 2016.
[123] Sabalová M, Oriňaková R, Oriňak A, Smoradová I, Kupková M, Strecková M. Chem. Pap., 2016, 71:513
[124] Feng J X, Ding L X, Ye S, He X J, Xu H,Tong Y X, Li G R. Adv. Mater., 2015, 27:7051
[125] Balun Kayan D, Koçak D. J. Solid State Electr., 2017,21(10):2791.
[126] Zhuo J, Wang T, Zhang G, Liu L, Gan L, Li M. Angew. Chem. Int. Ed., 2013, 52:10867
[127] Torres C, Moreno B, Chinarro E, de Fraga Malfatti C.Int. J. Hydrogen Energ., 2017, 42:20410.
[128] Dalla Corte D A, Torres C,dos Santos Correa P, Rieder E S, de Fraga Malfatti C.Int. J. Hydrogen Energ., 2012, 37:3025.
[129] Liu B, He J B, Chen Y J, Wang Y, Deng N. Int. J. Hydrogen Energ., 2013, 38:3130
[130] Raoof J B, Omrani A, Ojani R, Monfared F. J. Electroanal. Chem., 2009, 633:153.
[131] Wang H, Lin J, Shen Z X. Journal of Science:Advanced Materials and Devices, 2016, 1:225.
[132] Faber M S, Jin S. Energy Environ. Sci., 2014, 7:3519
[133] 陈延禧(Chen Y X). 电解工程(Electrochemical Engineering). 天津:天津科学技术出版社(Tianjin:Tianjin Scientific Technology Press), 1993.
[134] Oldham K, My l J. Electrochemical. Science,1993, 309:453.
[135] Janjua M B I, Le Roy R L. Int. J. Hydrogen Energ., 1985, 10:11.
[136] Bird R B, Steward W E, Lightfoot EN,Transport Phenomena. John Wiley & Sons, 1960, 28:338.
[137] Wendt H, Kreysa G. Electrochemical Engineering. Berlin Heidelberg:Springer, 1999.
[138] 张开悦(Zhang K Y), 刘伟华(Liu W H),陈晖(Chen H), 张博(Zhang B), 刘建国(Liu J G), 严川伟(Yan C W). 化工进展(Chem. Ind. Eng. Prog.), 2015, 34:3680.
[139] 衣宝廉(Yi B L). 无机盐工业(Inorg. Chem. Ind.), 1981, 6:8.
[140] Leroy R L. Int. J. Hydrogen Energ., 1983, 8:401.
[1] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[5] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[6] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[7] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[8] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[9] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[10] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[11] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[12] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[13] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[14] Rui Zhang, Xuan Liu, Hongbing Ji*. Nano-Microcapsule Intermediate of Natural Flavor [J]. Progress in Chemistry, 2018, 30(1): 29-43.
[15] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.