中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 156-165 DOI: 10.7536/PC170901 Previous Articles   Next Articles

• Review •

Research in the Preparation and Application of Nanobowl Arrays

Li Li, Jian Dong, Weiping Qian*   

  1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Research & Development Program of China(No. 2017YFA0205303, 2017YFE0100200) and the National Natural Science Foundation of China(No.21775020).
PDF ( 744 ) Cited
Export

EndNote

Ris

BibTeX

Nanobowl arrays, such as gold nanobowl arrays, silver nanobowl arrays, ZnO nanobowl arrays and TiO2 nanobowl arrays, all have ordered periodic holes, large surface area and reduced symmetry. These unique nanobowls not only provide nano-porous structures, but also bring many special physical and chemical properties. In recent years, these nanobowl arrays have attracted a great deal of attention because of their novel and/or enhanced properties arising from the porous structures. In this review, all kinds of preparation methods and fabricated processes of various nanobowl arrays are introduced. The details are as follows. Firstly, colloidal crystal template(generally silica spheres or polystyrene microspheres) is prepared via self-assembly. Secondly, different kinds of materials as required are deposited on the colloidal crystal template by physical vapor deposition, chemical deposition or electrochemical deposition. Finally, colloidal crystal template is removed via dissolving or high temperature treatment to obtain nanobowl arrays. Meanwhile, the diverse applications of the nanobowl arrays are also summarized, for example, SERS substrates, nanosensor, catalysis, optics application. What's more, the advantages and disadvantages of different fabrication methods are discussed, as well as the prospects of the nanobowl arrays and the existing problems.
Contents
1 Introduction
2 Preparation of nanobowl arrays
2.1 Preparation of colloidal crystal template
2.2 Preparation of inorganic and organic nanoshell
2.3 Removal of template
2.4 Fabrication of various nanobowl arrays
3 Applications of nanobowl arrays
3.1 Application in surface-enhanced Raman spectroscopy
3.2 Application in sensor
3.3 Application in catalysis
3.4 Application in optics
4 Conclusion

CLC Number: 

[1] Prasad P N. Nanophotonics. Hoboken:John Wiley & Sons, Inc., 2004.
[2] Wolf E L. Nanophyscis and Nanotechnology:An Introduction to Modern Concepts in Nanoscience. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
[3] Ye J, Verellen N, Van Roy W, Lagae L, Maes G, Borghs G, Van Dorpe P. ACS Nano, 2010, 4(3):1457.
[4] Wang X D, Gruagnard E, King J S, Wang Z L, Summers C J. Nano Lett., 2004, 4:2223.
[5] Wang X D, Lao C, Graugnard E, Summers C J, Wang Z L. Nano Lett., 2005, 5:1784.
[6] Peng J, Li X, Kim D H, Knoll W. Macromol. Rapid Commun., 2007, 28:2055.
[7] Baumberg J J, Kelf T A, Sugawara Y, Cintra S, Abdelsalam M E, Bartlett P N, Russell A E. Nano Lett., 2005, 5(11):2262.
[8] Wang Y F, Chen X L, Zhang J H, Sun Z Q, Li Y F, Zhang K,Yang B. Colloids Surf. A:Physicochem. Eng. Aspects, 2008,329:184.
[9] Brown A B D, Smith C G, Rennie A R. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 62:951.
[10] Lee H M, Kim Y N, Kim B H, Kim S O, Cho W O. Adv. Mater., 2008, 20:2094.
[11] Terris B D, Thomson T. J. Phys. D:Appl. Phys., 2005, 38:199.
[12] Smith C L C, Desiatov B, Goykmann I, Fernandez-Cuesta I, Levy U, Kristensen A. Opt. Express, 2012, 20:5696.
[13] Tseng A A. J. Micromech. Microeng., 2004, 14:15.
[14] Zhang J H, Li Y F, Zhang X M, Yang B. Adv. Mater., 2010, 22:4249.
[15] Yang S K, Lei Y. Nanoscale, 2011, 3:2768.
[16] Ye X Z, Qi L M. Nano Today, 2011, 6:608.
[17] Srivastava A K, Madhavi S, White T J, Ramanujan R V. J. Mater. Chem., 2005, 15:4424.
[18] Rao Y Y, Tao Q, An M, Rong C H, Dong J, Dai Y R, Qian W P. Langmuir, 2011, 27:13308.
[19] Xu M J, Lu N, Xu H B, Qi D P, Wang Y D, Chi L F. Langmuir, 2009, 25:11216.
[20] Johnson L, Walsh D A. J. Mater. Chem., 2011, 21:7555.
[21] Chitu L, Siffalovic P, Majkova E, Jergel M, Vegso K, Ludy S, Capek I, Satka A, Perlich J, Timmann A, Roth S V, Keckes J, Maire G A. Meas. Sci. Rev., 2010, 10:162.
[22] Park H K, Moon J H, Yoon S, Do Y R. J. Electrochem. Soc., 2011, 158(5):J143.
[23] Bartlett P N, Ghanem M A, El Hallag I S, de Groot P, Zhukov A. J. Mater. Chem., 2003, 13:2596.
[24] Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard S W, Lopez C, Meseguer F, Miguez H, Mondia J P, Ozin G A, Toader O, van Driel H M. Nature, 2000, 405:437.
[25] Shchukin D G,Caruso R A. Chem. Mater., 2004, 16:2287.
[26] Yu J, Geng C, Zeng Y M, Yan Q F, Wang X Q, Shen D Z. ACS Macro Lett., 2012, 1:62.
[27] Liu J B, Dong H, Li Y M, Zhan P W, Zhu M W, Li Z. Jpn. J. Appl. Phys., 2006, 45(22):582.
[28] 薛培宏(Xue P H), 王铁强(Wang T Q), 艾斌(Ai B), 叶顺盛(Ye S S), 李东风(Li D F), 张俊虎(Zhang J H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2014, 35(5):1106.
[29] Li X Y, Wu Y C, Hang L F, Men D D, Cai W P, Li Y J. Mater. Chem. C, 2015, 3:51.
[30] Ye J, Van Dorpe P, Van Roy W, Borghs G, Maes G. Langmuir, 2009, 25:1822.
[31] Johnson L, Walsh D A. J. Mater. Chem., 2011, 21:7555.
[32] 许苗军(Xu M J), 陈天然(Chen T R), 李斌(Li B).高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(11):2368.
[33] Zhang Y J, Wang Y X, Billups W E, Liu H B, Yang J H. Solid State Commun., 2010, 150:2357.
[34] Srivastava A K, Madhavi S, White T J, Ramanujan R V. J. Mater. Res., 2007, 22(5):1250.
[35] Chen T H, Tsai T Y, Hsieh K C, Chang S C, Tai N H, Chen H L. Nanotechnology, 2008, 19:465303.
[36] Wei X Y, Chen X Z, Jiang K. Nanoscale Res. Lett., 2011, 6(25):1.
[37] Wang Y F, Zhang J H, Chen X L, Li X, Sun Z Q, Zhang K, Wang D Y, Yang B J. Colloid Interf. Sci., 2008, 322:327.
[38] Park H K, Yoon S W, Choi D Y, Do Y R. J. Mater. Chem. C, 2013, 1:1732.
[39] Chen S Y, Yen Y T, Chen Y Y, Hsu C S, Chueh Y L, Chen L J. RSC Adv., 2012, 2:1314.
[40] Wu K, Zhang Y Y, Wei T B, Lan D, Sun B, Zhengn H Y, Lu H X, Chen Y, Wang J X, Luo Y, Li J M. AIP Adv., 2013, 3:092124.
[41] Liu Y P, Li Z G, Zhong W W, Zhang L, Chen W P, Li Q T. Nanoscale Res. Lett., 2014, 9:389.
[42] Li Y, Ye X Z, Ma Y R, Qi L M. Small, 2015, 11:1183.
[43] Chen J Y, Chao D M, Lu X F, Zhang W J, Manohar S K. Macromol. Rapid Commun., 2006, 27:771.
[44] Chen X, Wei X, Jiang K. Microelectron Eng., 2009, 86:871.
[45] Lee C, Carney R P, Hazari S, Smith Z J, Knudson A, Robertson C S, Lama K, Wachsmann-Hogiu S. Nanoscale, 2015, 7:9290.
[46] Barnes W L, Dereux A, Ebbesen T W. Nature, 2003, 424:824.
[47] Nie S M, Emory S R. Science, 1997, 275:1102.
[48] Liu F X, Cao Z S, Tang C J, Chen L, Wang Z L. ACS Nano, 2010, 4:2643.
[49] Chen L, Liu F X, Zhan P, Pan J, Wang Z L. Chin. Phys. Lett., 2011, 28(5):057801.
[50] Tian S, Zhou Q, Gu Z M, Gu X F, Zheng J W. Analyst, 2013, 138:2604.
[51] Li L, Liu C, Cao X W, Wang Y, Dong J, Qian W P. Anal. Lett., 2017, 50(6):982.
[52] Ye X Z, Li Y, Dong J Y, Xiao J Y, Ma Y R, Qi L M. J. Mater. Chem. C, 2013, 1:6112.
[53] Li L M, Jiao X L, Cheng D R, Li C. Cryst. Growth Des., 2016, 16:2700.
[54] Hong G S, Li C, Qi L M. Adv. Funct. Mater., 2010, 20:3774.
[55] Wang W H, Dong J Y, Ye X Z, Li Y, Ma Y R, Qi L M. Small, 2016, 12:1469.
[56] Lu L H, Eychmuller A.Acc. Chem. Res., 2008, 41:244.
[57] Peng J, Li X, Kim D H, Knoll W. Macrol. Rapid Commun., 2007, 28:2055.
[58] Qiu Y C, Leung S F, Zhang Q P, Mu C, Hua B, Yan H, Yang S H, Fan Z Y. Sci. Bull., 2015, 60(1):109.
[59] Zheng X L, Wei Z H, Chen H N, Zhang Q P, He H X, Xiao S, Fan Z Y, Wong K S, Yang S H. Nanoscale, 2016, 8:6393.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[6] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[7] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[8] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[9] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[10] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[11] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[12] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[13] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[14] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[15] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.