中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 243-251 DOI: 10.7536/PC170818 Previous Articles   Next Articles

• Review •

High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells

Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the State's Key Project of Research and Development Plan of China(No. 2016YFB0101201), the National Natural Science Foundation of China(No. 21476088, 51302091, U1301245), the Natural Science Foundation of Guangdong Province(No. 2014A010105041, 2015A030312007), the Guangdong Provincial Department of Science and Technology(No. 2015B010106012), the Educational Commission of Guangdong Province(No.2013CXZDA003), and the Guangzhou Science Technology Innovation Committee(No. 2016201604030012).
PDF ( 2011 ) Cited
Export

EndNote

Ris

BibTeX

Membrane electrode assembly(MEA) is the most important component of proton exchange membrance(PEM) fuel cell and it plays a crucial role for the performance of the fuel cell. High performance and high power density MEA is urgently desired for the commercialization of the fuel cell on a large scale. The conventional MEA is consist of proton exchange membrane, cathode/anode catalyst layer, cathode/anode gas diffusion layer(usually called five in one MEA), and the gas diffusion layer includes gas diffusion material and microporous layer. The performance of MEA depends on two aspects of materials and preparation technology. The preparation technology, the key component material of MEA and the platinum loading have an important influence on the performance and power density of MEA. In recent years, the performance of MEA has been greatly improved with the improvement of the key material(such as catalyst, proton exchange membrane) and the progress of preparation technology, and the volume power density of the Toyota Corporation can achieve as high as 3.2 kW/L. In this paper, the research progress of MEAs with high performance and high power density in recent years are introduced from the main views of MEA's preparation technology, involving the preparation technology of catalyst layer and gas diffusion layer. Meanwhile, the research progress are introduced in two aspects:reducing platinum loading and developing self-humidifying MEAs.
Contents
1 Introduction
2 Research and development of electrode preparation and assembly technology
3 Construction and research of proton exchange membrane and functional layers
3.1 The influence of proton exchange membrane on the performance of membrane electrode
3.2 Construction of catalyst layer
3.3 Construction of gas diffusion layer and microporous layer
4 Low platinum supported membrane electrode assembly with high performance
5 Self-humidifying membrane electrode assembly with high performance
6 Conclusion

CLC Number: 

[1] Rezaei Niya S M, Hoorfar M. J. Power Sources, 2013, 240:281.
[2] Kraytsberg A, Ein-Eli Y. Energy Fuels, 2014, 28:7303.
[3] Pei P C, Chen H C. Appl. Energy, 2014, 125:60.
[4] Long H T, Del Frari D, Martin A, Didierjean J, Ball V, Michel M, El Ahrach H I. J. Power Sources, 2016, 307:569.
[5] Oshima T, Yoshizawa-Fujita M, Takeoka Y, Rikukawa M. ACS Omega, 2016, 1:939.
[6] Yang S Y, Seo D J, Kim M R, Seo M H, Hwang S M, Jung Y M, Kim B J, Yoon Y G, Han B, Kim T Y. J. Power Sources, 2016, 328:75.
[7] Ferreira R B, Falcão D S, Oliveira V B, Pinto A. Electrochim. Acta, 2017, 224:337.
[8] Jeong G, Kim M, Han J, Kim H J, Shul Y G, Cho E. J. Power Sources, 2016, 323:142.
[9] Klingele M, Britton B, Breitwieser M, Vierrath S, Zengerle R, Holdcroft S, Thiele S. Electrochem. Commun., 2016, 70:65.
[10] Mehrpooya M, Nouri G, Eikani M H, Khandan N, Hajinezhad A. Int. J. Ambient Energy, 2015, 37:639.
[11] Sassin M B, Garsany Y, Gould B D, Swider-Lyons K E. Anal. Chem., 2017, 89:511.
[12] Zhiani M, Mohammadi I, Majidi S. Int. J. Hydrogen Energy, 2017, 42:4490.
[13] Su H N, Pasupathi S, Bladergroen B, Linkov V, Pollet B G. Int. J. Hydrogen Energy, 2013, 38:11370.
[14] Hezarjaribi M, Jahanshahi M, Rahimpour A, Yaldagard M. Appl. Surf. Sci., 2014, 295:144.
[15] Wilson M S, Gottesfeld S. J. Appl. Electrochem., 1992, 22:1.
[16] Yilmaztürk S, Gümüsoglu T, Ari G A, Öksüzömer F, Deligöz H. J. Power Sources, 2012, 201:88.
[17] Wang W T, Chen S Q, Li J J, Wang W. Int. J. Hydrogen Energy, 2015, 40:4649.
[18] Huang T H, Shen H L, Jao T C, Weng F B, Su A. Int. J. Hydrogen Energy, 2012, 37:13872.
[19] Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. Adv. Energy Mater., 2011, 1:1205.
[20] Du S F, Pollet B G. Int. J. Hydrogen Energy, 2012, 37:17892.
[21] Kim O H, Cho Y H, Kang S H, Park H Y, Kim M, Lim J W, Chung D Y, Lee M J, Choe H, Sung Y E. Nat. Commun., 2013, 4:2473.
[22] Zhang C K, Yu H M, Li Y K, Gao Y, Zhao Y, Song W, Shao Z G, Yi B L. ChemSusChem, 2013, 6:659.
[23] Murata S, Imanishi M, Hasegawa S, Namba R. J. Power Sources, 2014, 253:104.
[24] Gashoul F, Parnian M J, Rowshanzamir S. Int. J. Hydrogen Energy, 2017, 42:590.
[25] Parnian M J, Rowshanzamir S, Gashoul F. Energy, 2017, 125:614.
[26] Peron J, Mani A, Zhao X, Edwards D, Adachi M, Soboleva T, Shi Z Q, Xie Z, Navessin T, Holdcroft S. J. Membr. Sci., 2010, 356:44.
[27] Peighambardoust S J, Rowshanzamir S, Amjadi M. Int. J. Hydrogen Energy, 2010, 35:9349.
[28] Wang R J, Zhang W J, He G H, Gao P. J. Mater. Chem. A, 2014, 2:16416.
[29] Klingele M, Breitwieser M, Zengerle R, Thiele S. J. Mater. Chem. A, 2015, 3:11239.
[30] Yu D M, Kim T H, Lee J Y, Yoon S, Hong Y T. Electrochim. Acta, 2015, 173:268.
[31] Wei M, Jiang M, Liu X B, Wang M, Mu S C. J. Power Sources, 2016, 327:384.
[32] Lai S, Park J, Cho S, Tsai M, Lim H, Chen K. Int. J. Hydrogen Energy, 2016, 41:9556.
[33] Gao Y A, Zhang X X. Electrochim. Acta, 2016, 218:101.
[34] Suzuki T, Tanaka H, Hayase M, Tsushima S, Hirai S. Int. J. Hydrogen Energy, 2016, 41:20326.
[35] Heydari A, Gharibi H. J. Power Sources, 2016, 325:808.
[36] Zeng Y C, Shao Z G, Zhang H J, Wang Z Q, Hong S J, Yu H M, Yi B L. Nano Energy, 2017, 34:344.
[37] Xie J, Xu F, Wood D L, More K L, Zawodzinski T A, Smith W H. Electrochim. Acta, 2010, 55:7404.
[38] Zeis R. Beilstein J. Nanotechnol., 2015, 6:68.
[39] Shahgaldi S, Alaefour I, Unsworth G, Li X G. Int. J. Hydrogen Energy, 2017, 42:11813.
[40] Su K H, Sui S, Yao X Y, Wei Z X, Zhang J L, Du S F. Int. J. Hydrogen Energy, 2014, 39:3397.
[41] Ahn S H, Lee B S, Choi I, Yoo S J, Kim H J, Cho E A, Henkensmeier D, Nam S W, Kim S K, Jang J H. Appl. Catal. B-Environ., 2014, 154:197.
[42] Park I S, Li W, Manthiram A. J. Power Sources, 2010, 195:7078.
[43] Cho D H, Lee S Y, Shin D W, Hwang D S, Lee Y M. J. Power Sources, 2014, 258:272.
[44] Liang X L, Pan G S, Xu L, Wang J S. Fuel, 2015, 139:393.
[45] Yen Y T, Fang T H, Lin Y C. Robot. Comput. Integr. Manuf., 2011, 27:531.
[46] Su H, Jao T C, Barron O, Pollet B G, Pasupathi S. J. Power Sources, 2014, 267:155.
[47] Cooper C D, Burk J J, Taylor C P, Buratto S K. J. Appl. Electrochem., 2017, 47:699.
[48] Sung C C, Liu C Y, Cheng C C J. Int. J. Hydrogen Energy, 2014, 39:11706.
[49] Wei Z X, Su K H, Sui S, He A, Du S F. Int. J. Hydrogen Energy, 2015, 40:3068.
[50] Fofana D, Natarajan S K, Hamelin J, Benard P. Energy, 2014, 64:398.
[51] Kim G H, Eom K S, Kim M J, Yoo S J, Jang J H, Kim H J, Cho E. ACS Appl. Mater. Interfaces, 2015, 7:27581.
[52] Shu T, Dang D, Xu D W, Chen R, Liao S J, Hsieh C T, Su A, Song H Y, Du L. Electrochim. Acta, 2015, 177:168.
[53] Deevanhxay P, Sasabe T, Tsushima S, Hirai S. J. Power Sources, 2013, 230:38.
[54] Owejan J P, Trabold T A, Mench M M. Int. J. Heat Mass Transfer, 2014, 71:585.
[55] Park J, Oh H, Ha T, Lee Y I, Min K. Appl. Energy, 2015, 155:866.
[56] Zenyuk I V, Parkinson D Y, Hwang G, Weber A Z. Electrochem. Commun., 2015, 53:24.
[57] Kitahara T, Nakajima H, Inamoto M, Morishita M. J. Power Sources, 2013, 234:129.
[58] Kitahara T, Nakajima H, Inamoto M, Shinto K. J. Power Sources, 2014, 248:1256.
[59] Ebenezer D, Neelima K, Jagannatham M, Haridoss P. Fuel Cells, 2016, 16:349.
[60] Najafabadi A T, Leeuwner M J, Wilkinson D P, Gyenge E L. ChemSusChem, 2016, 9:1689.
[61] Oh H, Park J, Min K, Lee E, Jyoung J Y. Appl. Energy, 2015, 149:186.
[62] Park J, Oh H, Lee Y I, Min K, Lee E, Jyoung J Y. Appl. Energy, 2016, 171:200.
[63] Chun J H, Park K T, Jo D H, Lee J Y, Kim S G, Lee E S, Jyoung J Y, Kim S H. Int. J. Hydrogen Energy, 2010, 35:11148.
[64] Xie Z Y, Chen G F, Yu X, Hou M, Shao Z G, Hong S J, Mu C. Int. J. Hydrogen Energy, 2015, 40:8958.
[65] Dang D, Zhang L, Zeng X Y, Tian X L, Qu C, Nan H X, Shu T, Hou S Y, Yang L J, Zeng J H, Liao S J. J. Power Sources, 2017, 355:83.
[66] Breitwieser M, Klingele M, Britton B, Holdcroft S, Zengerle R, Thiele S. Electrochem. Commun., 2015, 60:168.
[67] Shukla S, Domican K, Karan K, Bhattacharjee S, Secanell M. Electrochim. Acta, 2015, 156:289.
[68] Martin S, Martinez-Vazquez B, Garcia-Ybarra P L, Castillo J L. J. Power Sources, 2013, 229:179.
[69] Rowshanzamir S, Peighambardoust S J, Parnian M J, Amirkhanlou G R, Rahnavard A. Int. J. Hydrogen Energy, 2015, 40:549.
[70] Sayadi P, Rowshanzamir S, Parnian M J. Energy, 2016, 94:292.
[71] Park C H, Lee S Y, Hwang D S, Shin D W, Cho D H, Lee K H, Kim T W, Kim T W, Lee M, Kim D S, Doherty C M, Thornton A W, Hill A J, Guiver M D, Lee Y M. Nature, 2016, 532:480.
[72] Yang H N, Lee W H, Choi B S, Kim W J. J. Membr. Sci., 2016, 504:20.
[73] Lee D C, Yang H N, Park S H, Park K W, Kim W J. J. Membr. Sci., 2015, 474:254.
[74] Lo A Y, Huang C Y, Sung L Y, Louh R F. Electrochim. Acta, 2015, 180:610.
[75] Hou S Y, Liao S J, Xiong Z A, Zou H B, Dang D, Zheng R P, Shu T, Liang Z X, Li X H, Li Y W. J. Power Sources, 2015, 273:168.
[76] Yang H N, Lee W H, Choi B S, Ko Y D, Yi S C, Kim W J. Energy, 2017, 120:12.
[1] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[2] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[3] Liu Feng, Wang Cheng, Zhang Jianbo, Lan Aidong, Li Jianqiu, Ouyang Minggao. Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2014, 26(11): 1763-1771.
[4] Wang Jiashu, Pan Guoshun, Guo Dan. Catalyst Layer Structure of Membrane Electrode Assemblies in PEMFC [J]. Progress in Chemistry, 2012, (10): 1906-1914.
[5] Wang Xindong, Xie Xiaofeng, Wang Meng, Liu Guicheng, Miao Ruiying, Wang Yituo, Yan Qun. Critical Materials and Technology in Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2011, 23(0203): 509-519.
[6] Suo Chunguang Liu Xiaowei Zhang Yufeng Zhang Bo Zhang Peng Wang Luwen. Development of Membrane Electrode Assembly for Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1662-1671.
[7] Yang Meng1,Xiang Yan1,2**,Wang Mubing3,Kang Sicong2,Xu Huibin1. Novel Proton Exchange Membranes Based on Chemical and Biological Modification [J]. Progress in Chemistry, 2009, 21(01): 244-250.
[8] Xiaoli Wang,Huamin Zhang**,Jianlu Zhang,Haifeng Xu,Baolian Yi. Progress of Gas Diffusion Layer for Proton Exchage Membrane Fuel Cells [J]. Progress in Chemistry, 2006, 18(04): 507-513.
[9] . Progress in Hydrogen Generation Using Plasmas [J]. Progress in Chemistry, 2005, 17(01): 69-77.