中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 190-197 DOI: 10.7536/PC170817 Previous Articles   Next Articles

• Review •

Shear-Responsive Drug Delivery Systems

Zhirui Dong, Weijun Tong*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21374101), the Zhejiang University K.P.Cao's High Technology Development Foundation, and the Fundamental Research Funds for the Central Universities(No.2016QNA4033).
PDF ( 543 ) Cited
Export

EndNote

Ris

BibTeX

One major symptom of atherosclerosis and vascular thrombosis is vascular stenosis caused by vascular lesion. Atherosclerosis has become one of the major threats to human health since it can result in severe diseases such as myocardial infarction and cerebral infarction. Therefore,it is of great significance to develop more effective ways to treat vascular stenosis diseases. The wall shear stress at severely stenosed arteries is at least one order of magnitude higher than that in healthy vessels. The significantly increased mechanical force could be used as a trigger signal for effective targeted drug delivery. Shear-responsive drug delivery systems can release their payloads under increased shear stress at the stenosed sites and have minimal side effects on the normal tissues and organs. Therefore, this natural physical trigger is an important and promising approach for targeted drug delivery to cure some cardiovascular diseases, especially vascular stenosis diseases such as atherosclerosis. Shear-responsive drug delivery systems have attracted great interests of researchers. The recent advances on shear-responsive drug delivery systems are reviewed. Various shear-responsive drug delivery systems classified on the basis of design ideas and responsive mechanisms are discussed. At last, the urgent needs, challenges and some personal perspectives of the shear-responsive drug carriers are also presented.
Contents
1 Introduction
2 Mechanism of shear-responsive drug delivery
3 Shear-responsive drug delivery systems
3.1 Aggregates of nanoparticles
3.2 Microcapsules and vesicles
3.3 RBCs-nanoparticles composite carriers
3.4 Supramolecular self-assembly hydrogels
4 Conclusion

CLC Number: 

[1] Ingall T J, O'Fallon W N, Asplund K, Goldfrank L R, Hertzberg V S, Louis T A, Christianson T G H. Stroke, 2004, 35:2418.
[2] Wechsler L R. New Engl. J.Med., 2011, 364:2138.
[3] Bark D L, Ku D N. J Biomech., 2010, 43:2970.
[4] Foin N, Lee R D, Torii R, Guitierrez-Chico J L, Mattesini A, Nijjer S, Sen S Y, Petraco R, Davies J E, Mario C D, Joner M, Virmani R, Wong P. Int. J. Cardiol., 2014, 177:800.
[5] Coskunm M, Vermeire S, Nielsen O H. Trends Pharmacol. Sci., 2017, 38:127.
[6] Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Chem. Rev., 2016, 116:5338.
[7] Tibbitt M W, Dahlman J E, Langer R. J. Am. Chem. Soc., 2016, 138:704.
[8] Maeda H, Matsumura Y. Adv. Drug Deliver. Rev., 2011, 63:129.
[9] Fang J, Nakamura H, Maeda H. Adv. Drug Deliver. Rev., 2011, 63:136.
[10] Jiang K, Chi T, Li T, Zheng G R, Fan L L, Liu Y J, Chen X F, Chen S J, Jia L, Shao J W. Nanoscale, 2017, 9:9428.
[11] Zheng H Q, Zhang Y N, Liu L F, Wan W, Guo P, Nystrom A M, Zou X D. J. Am. Chem. Soc., 2016, 138:962.
[12] Baek S, Singh R K, Kim T H, Seo J, Shin U S, Chrzanowski W, Kim H W. ACS Appl. Mater. Inter., 2016, 8:8967.
[13] Wang X Y, Zhang J S, Wang Y T, Wang C P, Xiao J R, Zhang Q, Cheng Y Y. Biomaterials, 2016, 81:114.
[14] Wang Z P, Feng Z Q, Gao C Y. Chem. Mater., 2008, 20, 4194.
[15] Sutton J T, Haworth K J, Pyne-Geithman G, Holland C K. Expert Opin. Drug Deliv., 2013, 10:573.
[16] Wang G S, Ma Y Y, Wei Z Y, Qi M. Chem. Eng. J., 2016, 289:150.
[17] Nieuwlaat R, Schwalm J D, Khatib R, Yusuf S. Eur. Heart J, 2013, 34:1262.
[18] Cicha I, Singh R, Garlichs C D, Alexiou C. J. Control. Release, 2016, 229:23.
[19] Saxer T, Zumbuehl A, Mueller B. Cardiovasc. Res., 2013, 99:328.
[20] Lowe G D. Baillieres Best Pract. Res. Clin. Haematol.,1999, 12, 435.
[21] Cunningham K S, Gotlieb A I. Lab. Invest., 2005, 85:9.
[22] Ernst W, Jan O, Ulrich K. Atherosclerosis, 2011, 216:277.
[23] Nesbitt W S, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. Nat. Med., 2009, 15:665.
[24] Fisher A B, Chien S, Barakat A L, Nerem R M. Am. J. Physiol. Lung Cell Mol. Physiol., 2001, 281:1529.
[25] Wootton D M, Ku D N. Annu. Rev. Biomed. Eng., 1999, 1:299.
[26] Bark D L, Ku D N. J. Biomech., 2010, 43:2970.
[27] Jo Y S, Vlies A J, Gantz J, Thacher T, Antonijevic S, Cavadini S, Demurtas D, Stergiopulos N, Hubbell J A. J. Am. Chem. Soc., 2009, 131:14413.
[28] Holme M N, Fedotenko I A, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon P L, ZieglerA, Müller B, Saxer T, Zumbuehl A. Nat. Nanotechnol., 2012, 7:536.
[29] Korin N, Kanapathipillai M, Matthews M D, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif S A, Bhatta D, Coskun A U, Feldman C L, Wagner D D, Ingber D E. Science, 2012, 337:738.
[30] Marosfoi M G, Korin N, Gounis M J, Uzun O, Vedantham S, Langan E T, Papa A L, Brooks O W, Johnson C, Puri A S, Bhatta D, Kanapathipillai M, Bronstein B R, Chueh J Y, Ingber D E, Wakhloo A K. Stroke, 2015, 46:3507.
[31] Mellal L, Belharet K, Folio D, Ferreira A. Nanopart. Res., 2015, 17:64.
[32] Zanina A, Vilesov A, Budtova T. Int. J. Pharm., 2002, 242:137.
[33] Zeo U, Tarabukina E, Budtova T. J. Controlled Release, 2005, 108:73.
[34] Tong W J, Song X X, Gao C Y. Chem. Soc. Rev., 2012, 41:6103.
[35] 仝维鋆(Tong W J), 高长有(Gao C Y). 高等学校化学学报(Chemical Journal of Chinese Universities),2008, 29(7):1285.
[36] She S P, Xu C X, Yin X F, Tong W J, Gao C Y. Langmuir, 2012, 28:5010.
[37] She S P, Li Q Q, Shan B W, Tong W J, Gao C Y. Adv. Mater., 2013, 25:5814.
[38] Natsume T, Yoshimoto M. ACS Appl. Mater. Inter., 2014, 6:3671.
[39] Staedtke V, Brahler M, Muller A, Georgieva R, Bauer S, Sternberg N, Voigt A, Lemke A, Keck C, Moschwitzer J, Baumler H, Small, 2010, 6:96.
[40] Muzykantov V R, Sakharov D V, Smirnov M D, Domogatsky S P, Samokhin G P. FEBS Lett., 1985, 182:62.
[41] Muzykantov V R. Exper. Opin. Drug Delivery, 2010, 7:403.
[42] Azarmi S, Roa W H, Lobenberg R. Adv. Drug Delivery Rev., 2008, 60:863.
[43] Faraji A H, Wipf P. Bioorg. Med. Chem., 2009, 17:2950.
[44] Wang A Z, Langer R, Farokhzad O C. Annu. Rev. Med., 2012, 63:185.
[45] Anselmo A C, Kumar S, Gupta V, Pearce A M, Ragusa A, Muzykantov V, Mitragotri S. Biomaterials, 2015, 68:1.
[46] Zhao Y N, Sun X X, Zhang G N, Trewyn B G, Slowing I I, Lin V S Y. ACS Nano, 2011, 5:1366.
[47] Anselmo A C, Gupta V, Zern B J, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S. ACS Nano, 2013, 7:11129.
[48] Chambers E, Mitragotri S. J. Controlled Release, 2004, 100:111.
[49] Chambers E, Mitragotri S. Exp. Biol. Med., 2007, 232:958.
[50] Chen C J, Li S K, Liu K, Ma G H, Yan X H. Small, 2016, 12:4719.
[51] Kaplan J A, Barthélémy P, Grinstaff M W. Chem. Commun., 2016, 52:5860.
[52] Himmelein S, Lewe V, Stuartb M C A, Ravoo B J. Chem. Sci., 2014, 5:1054.
[53] Feng Q, Wei K C, Lin S, Xu Z, Sun Y X, Shi P, Li G, Bian L M. Biomaterials, 2016, 101:217.
[54] Rodell C B, Kaminski A L, Burdick J A. Biomacromolecules, 2013, 14:4125.
[55] Jia Y G, Zhu X X. Chem. Mater., 2015, 27:387.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[9] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[10] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[11] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[12] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[13] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[14] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[15] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
Viewed
Full text


Abstract

Shear-Responsive Drug Delivery Systems