中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 365-382 DOI: 10.7536/PC170815 Previous Articles   Next Articles

• Review •

Covalent Organic Framework Materials Based on Schiff-Base Reaction

Chengjiang Zhang1*, Xiaoyan Yuan1, Zeli Yuan1, Yongke Zhong1, Zhuomin Zhang2, Gongke Li2   

  1. 1. School of Pharmacy, Zunyi Medical University, Zunyi 563003, China;
    2. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21765027).
PDF ( 3377 ) Cited
Export

EndNote

Ris

BibTeX

Schiff-base covalent organic frameworks (Schiff-base COFs) are a class of crystalline porous polymers with strong covalent bonds via Schiff-base condensation reaction. The COFs materials possess the advantages of low density, large surface area, tunable pore size and structure, facilely tailored functionality, versatile covalent-combination of building units, diverse synthetic methods, easy of introducing specific molecular recognition sites, excellent physical and chemical stability, and so on. These advantages provide the COFs materials with superior potentials in diverse applications, such as gas storage/adsorption, sensing, catalysis, optoelectronic material, and as enrichment media of sample pretreatment.Currently, Schiff-base COFs have become a research hotspot in the field of materials science.This review mainly describes the state-of-the-art development in the synthesis, preparation and application of Schiff-base COFs materials. In the end, the current statuses of COFs are summarized, and the future trends and application potentials of the COFs materials are also prospected.
Contents
1 Introduction
2 Types of COFs synthesized
2.1 Imine linkage
2.2 Hydrazone linkage
2.3 Azine linkage
2.4 Polyimide linkage
3 Synthetic methods of COFs
3.1 Solvothermal synthesis
3.2 Microwave synthesis
3.3 Mechanochemical grindig synthesis
3.4 Room-temperature synthesis
3.5 Surface synthesis
4 Applications of COFs
4.1 Gas storage/adsorption
4.2 Catalysis
4.3 Sensing
4.4 Optoelectronic material
4.5 Sample pretreatment media
4.6 Chromatographic stationary phases
4.7 Biological medicine
5 Conclusion

CLC Number: 

[1] Côté A P, Benin A I, Ockwig N W, ÓKeeffe M, Matzger A J, Yaghi O M. Science, 2005, 310:1166.
[2] Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41:6010.
[3] Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42:548.
[4] Jin Y H, Zhu Y L, Zhang W. Cryst.Eng. Comm., 2013, 15:1484.
[5] Segura J L, Mancheño M J, Zamora F, Chem. Soc. Rev., 2016, 45:5635.
[6] Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, ÓKeeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131:4570.
[7] Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey S K, Liao L, Ambrogio M W, Botros Y Y, Duan X F, Seki S, Fraser Stoddart J, Yaghi O M. Chem. Mater., 2011, 23:4094.
[8] Zhang Y B, Su J, Furukawa H, Yun Y F, Gándara F, Duong A, Zou X D, Yaghi O M. J. Am. Chem. Soc., 2013, 135:16336.
[9] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[10] Chen X, Addicoat M, Irle S, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 13:546.
[11] Jin S B, Sakurai T, Kowalczyk T, Dalapati S, Xu F, Wei H, Chen X, Gao J, Seki S, Irle S, Jiang D L. Chem. Eur. J., 2014, 20:14608.
[12] Chen X, Huang N, Gao J, Xu H, Xu F, Jiang D L. Chem. Commun., 2014, 50:6161.
[13] Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6:7786.
[14] Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem. Int. Ed., 2014, 126:2922.
[15] Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138:3302.
[16] Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134:19524.
[17] Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135:17853.
[18] Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136:6570.
[19] DeBlase C R, Silberstein K E, Truong T T, Abruña H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135:16821.
[20] Xu H S, Ding S Y, An W K, Wu H, Wang W. J. Am. Chem. Soc., 2016, 138:11489.
[21] Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013, 52:13052.
[22] Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015, 6:6786.
[23] Chen X, Addicoat M, Jin E Q, Zhai L P, Xu H, Huang N, Guo Z Q, Liu L L, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137:3241.
[24] Song J R, Sun J L, Liu J M, Huang Z T, Zheng Q Y. Chem. Commun., 2014, 50:788.
[25] Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136:15885.
[26] Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 2016, 52:11704.
[27] Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138:4710.
[28] Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133:11478.
[29] Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5:2789.
[30] Das G, Shinde D B, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50:12615.
[31] Zhang W J, Jiang P P, Wang Y, Zhang J, Gao Y X, Zhang P B. RSC Adv., 2014, 4:51544.
[32] Zhang W J, Jiang P P, Wang Y, Zhang J, Zhang P B. Catal. Sci. Technol., 2015, 5:101.
[33] Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135:17310.
[34] Li Z P, Feng X, Zou Y C, Zhang Y W, Xia H, Liu X M, Mu Y. Chem. Commun., 2014, 50:13825.
[35] Li Z P, Zhi Y F, Feng X, Ding X S, Zou Y C, Liu X M, Mu Y. Chem. Eur. J., 2015, 21:12079.
[36] Alahakoon S B, Thompson C M, Nguyen A X, Occhialini G, McCandless G T, Smaldone R A. Chem. Commun., 2016, 52:2843.
[37] Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5:4503.
[38] Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137:8352.
[39] Wei H, Chai S Z, Hu N T, Yang Z, Wei L M, Wang L. Chem. Commun., 2015, 51:12178.
[40] Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013,135:5328.
[41] Ruigómez A P, Rodríguez-San-Miguel D, Stylianou K C, Cavallini M, Gentili D, Liscio F, Milita S, Roscioni O M, Ruiz-González M L, Carbonell C, Maspoch D, Mas-Ballesté R, Segura J L, Zamora F. Chem. Eur. J., 2015, 21:10666.
[42] Shiraki T, Kim G, Nakashima N. Chem. Lett., 2015, 44:1488.
[43] Xu L R, Zhou X, Yu Y X, Tian W Q, Ma J, Lei S B. ACS Nano, 2013, 9:8066.
[44] Liu X H, Guan C Z, Ding S Y, Wang W, Yan H J, Wang D, Wan L J. J. Am. Chem. Soc., 2013, 135:10470.
[45] Yue J Y, Liu X H, Sun B, Wang D. Chem. Commun., 2015, 51:14318.
[46] Hu Y, Goodeal N, Chen Y, Ganose A M, Palgrave R G, Bronstein H, Blunt M O. Chem. Commun., 2016, 52:9941.
[47] Xu L R, Zhou X, Tian W Q, Gao T, Zhang Y F, Lei S B, Liu Z F. Angew. Chem. Int. Ed., 2014, 53:9564.
[48] DeBlase C R, Hernandez-Burgos K, Silberstein K E, Rodriguez-Calero G G, Bisbey R P, Abruna H D, Dichtel W R. ACS Nano, 2015, 9:3178.
[49] Cai S L, Zhang Y B, Pun A B, He B, Yang J H, Toma F M, Sharp L D, Yaghi O M, Fan J, Zheng S R, Zhang W G, Liu Y. Chem. Sci., 2014, 5:4693.
[50] Kandambeth, Biswal B P, Chaudhari H D, Rout K C, Kunjattu H S, Mitra S, Karak S, Das A, Mukherjee R, Kharul U K, Banerjee R. Adv. Mater., 2017, 29:1603945.
[51] Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R S, El-Kaderi H M. Chem. Eur. J., 2013, 19:3324.
[52] Gao Q, Bai L Y, Zhang X J, Wang P, Li P Z, Zeng Y F, Zou R Q, Zhao Y L. Chin. J. Chem., 2015, 33:90.
[53] Xu L Q, Ding S Y, Liu J M, Sun J L, Wang W, Zheng Q Y. Chem. Commun., 2016, 52:4706.
[54] Xu S Q, Liang R R, Zhan T G, Qi Q Y, Zhao X. Chem. Commun., 2017, 53:2431.
[55] Kaleeswaran D, Vishnoi P, Murugavel R. J. Mater. Chem. C, 2015, 3:7159.
[56] Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 127:3029.
[57] Huang N, Chen X, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137:7079.
[58] Lin S, Hou Y X, Deng X, Wang H L, Sun S Z, Zhang X M. RSC Adv., 2015, 5:41017.
[59] Pachfule P, Panda M K, Kandambeth S, Shivaprasad S M, Díaz D D, Banerjee R. J. Mater. Chem. A, 2014, 2:7944.
[60] Pachfule P, Kandambeth S, Díaz D D, Banerjee R. Chem. Commun., 2014, 50:3169.
[61] Shinde D B, Kandambeth S, Pachfule P, Kumar R R, Banerjee R. Chem. Commun., 2015, 51:310.
[62] Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Eur. J., 2014, 50:1292.
[63] Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7:905.
[64] Wu Y, Xu H, Chen X, Gao J, Jiang D L. Chem. Commun., 2015, 51:10096.
[65] Thote J, Aiyappa H B, Deshpande A, Diaz D D, Kurungot S, Banerjee R. Chem. Eur. J., 2014, 20:15961.
[66] Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem. Sci., 2015, 6:3931.
[67] Xie Y F, Ding S Y, Liu J M, Wang W, Zheng Q Y. J. Mater. Chem. C, 2015, 3:10066.
[68] Wang P Y, Kang M M, Sun S M, Liu Q, Zhang Z H, Fang S M. Chin. J. Chem., 2014, 32:838.
[69] Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016, 138:3031.
[70] Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. Chem. Eur. J., 2014, 20:14614.
[71] Feldblyum J I, McCreery C H, Andrews S C, Kurosawa T, Santos E J G, Duong V, Fang L, Ayzner A L, Bao Z N. Chem. Commun., 2015, 51:13894.
[72] Wang P Y, Wu Q, Han L F, Wang S, Fang S M, Zhang Z H, Sun S M. RSC Adv., 2015, 5:27290.
[73] Souza-Silva É A, Jiang R F, Lafuente A R, Gionfriddo E, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:224.
[74] Souza-Silva É A, Gionfriddo E, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:236.
[75] Souza-Silva É A, Garcés N R, Gómez-Ríos G A, Boyaci E, Bojko B, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:249.
[76] Wu M X, Chen G, Liu P, Zhou W H, Jia Q. J. Chromatogr. A, 2016, 1456:34.
[77] Wu M X, Chen G, Ma J T, Liu P, Jia Q. Talanta, 2016, 161:350.
[78] Zhang S H, Yang Q, Li Z, Wang W C, Wang C, Wang Z. Anal. Bioanal. Chem., 2017, 409:3429.
[79] Xie L J, Jiang R F, Zhu F, Liu H, Ouyang G F. Anal. Bioanal. Chem., 2014, 406:377.
[80] Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53:2511.
[81] He S J, Zeng T, Wang S H, Niu H Y, Cai Y Q. ACS App. Mater. Interfaces, 2017, 9:2959.
[82] Wang H P, Jiao F L, Gao F Y, Huang J J, Zhao Y, Shen Y H, Zhang Y J, Qian X H. J. Mater. Chem. B, 2017, 5:4052.
[83] Lin G, Gao C H, Zheng Q, Lei Z X, Geng H J, Lin Z A,Yang H H, Cai Z W. Chem. Commun., 2017, 53:3649.
[84] Yang C X, Liu C, Cao Y M, Yan X P. Chem. Commun., 2015, 51:12254.
[85] Qian H L, Yang C X, Yan X P. Nat. Commun., 2016, 7:12104.
[86] Niu X Y, Ding S Y, Wang W F, Xu Y L, Xu Y Y, Chen H L, Chen X G. J. Chromatogr. A, 2016, 1436:109.
[87] Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28:8749.
[88] Lohse M S, Stassin T, Naudin G, Wuttke S, Ameloot R, Vos D D, Medina D D, Bein T. Chem. Mater., 2016, 28:626.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[5] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[6] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[9] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[10] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[11] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[12] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[13] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[14] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[15] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.