中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 252-271 DOI: 10.7536/PC170813 Previous Articles   Next Articles

• Review •

Poly(3, 4-Ethylenedioxythiophene) Based Electrode Materials: Preparation, Modification and Application in Electronic Devices

Di Xu, Hujiang Shen*, Huihui Yuan, Wei Wang, Junjie Xie   

  1. State Key Laboratory of Materials for Energy Transformation, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-SW-STS-152) and the Science and Technology Commission of Shanghai Municipality(No.15DZ2281200).
PDF ( 1422 ) Cited
Export

EndNote

Ris

BibTeX

As a kind of low-cost transparent conductive material with good film-forming properties, high thermal stability and tunable conductivity, poly(3,4-ethylenedioxythiophene)(PEDOT) has exhibited attractive applications in various energy conversion and storage devices. However, the performances of these devices are restricted by some drawbacks of PEDOT, mainly its low conductivity. In this review, firstly the basic properties, commonly adopted chemical and physical approaches for synthesizing PEDOT films and several ways to improve their conductivity are briefly introduced. Then the latest research progresses of devices including solar cells, light-emitting diodes, electrochromic devices and supercapacitors assembled by PEDOT and PEDOT-based composited materials are reviewed. In addition to elucidating the roles of PEDOT-based materials played in the aforementioned devices, the design ideas of PEDOT-based materials proposed by researchers for fulfilling the requirements of different devices are introduced in detail. The ideas include designing PEDOT films with specific microstructures, modulating the conductivity, work function, optical transparency and other properties of PEDOT, and coupling PEDOT with other active materials such as carbon materials, metal nanoparticles and metal oxides. Finally, the challenges nowadays in the studying of PEDOT-based electrode materials are pointed out, and the prospect of these materials is proposed.
Contents
1 Introduction
2 Preparation and modification of PEDOT based electrode materials
2.1 Preparation of PEDOT based electrode materials
2.2 Modification of PEDOT based electrode materials
3 Applications of PEDOT based electrode materials
3.1 Solar cells
3.2 Light-emitting diodes
3.3 Electrochromic devices
3.4 Supercapacitors
3.5 Other devices
3.6 Working mechanisms of PEDOT based electrode materials
4 Conclusion

CLC Number: 

[1] Zhu Z Z, Mankowski T, Balakrishnan K, Shikoh A S, Touati F, Benammar M A, Mansuripur M, Falco C M. ACS Appl. Mater. Interfaces, 2015, 7(30):16223.
[2] Cheng T, Zhang Y Z, Lai W Y, Chen Y, Zeng W J, Huang W. J. Mater. Chem. C, 2014, 2(48):10369.
[3] Cha S, Cha M, Lee S, Kang J H, Kim C. Sci. Rep., 2015, 5:17877.
[4] Worfolk B J, Andrews S C, Park S, Reinspach J, Liu N, Toney M F, Mannsfeld S C B, Bao Z N. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(46):14138.
[5] 杜续生(Du X S), 佘平平(She P P), 汪正浩(Wang Z H). 化学学报(Acta Chim. Sinica), 2003, 61(4):536.
[6] 蒋丰兴(Jiang F X), 徐景坤(Xu J K). 江西科技师范大学学报(J. Jiangxi Sci. Technol. Normal Univ.), 2013(6):36.
[7] 李昱煜(Li Y Y), 沈沪江(Shen H J), 刘岩(Liu Y), 王炜(Wang W), 袁慧慧(Yuan H H), 谢华清(Xie H Q). 材料导报(Mater. Rev.), 2017, 31(7):19.
[8] Anothumakkool B, Soni R, Bhange S N, Kurungot S. Energy Environ. Sci., 2015, 8(4):1339.
[9] Rajesh M, Justin Raj C, Kim B C, Manikandan R, Kim K H, Park S Y, Yu K H. Electrochim. Acta, 2017, 240:231.
[10] Zhao X, Dong M Y, Zhang J X, Li Y Z, Zhang Q H. Nanotechnology, 2016, 27(38):385705.
[11] Edberg J, Iandolo D, Brooke R, Liu X J, Musumeci C, Andreasen J W, Simon D T, Evans D, Engquist I, Berggren M. Adv. Funct. Mater., 2016, 26(38):6950.
[12] Koch L, Polek A, Rudd S, Evans D. ACS Appl. Mater. Interfaces, 2017, 9(1):65.
[13] Du X, Wang Z. Electrochim. Acta, 2003, 48(12):1713.
[14] Cysewska K, Karczewski J, Jasiński P. Electrochim. Acta, 2015, 176:156.
[15] Imae I, Fujimoto D, Zhang L, Harima Y. Electrochem. Commun., 2017, 81:65.
[16] Wen Y P, Xu J K. J. Polym. Sci., Part A:Polym. Chem., 2017, 55(7):1121.
[17] Li W P, Zhang X L, Zhang X, Yao J N, Zhan C L. ACS Appl. Mater. Interfaces, 2017, 9(2):1446.
[18] Yun D J, Jeong Y J, Ra H, Kim J M, Park J H, Park S H, An T K, Seol M, Park C E, Jang J, Chung D S. J. Phys. Chem. C, 2016, 120(20):10919.
[19] Lee I, Kim G W, Yang M, Kim T S. ACS Appl. Mater. Interfaces, 2016, 8(1):302.
[20] Xu S J, Luo Y F, Liu G W, Qiao G J, Zhong W, Xiao Z H, Luo Y P, Ou H. Electrochim. Acta, 2015, 156:20.
[21] Zhang W F, Zhao B F, He Z C, Zhao X M, Wang H T, Yang S F, Wu H B, Cao Y. Energy Environ. Sci., 2013, 6(6):1956.
[22] Xia Y J, Ouyang J Y. Macromolecules, 2009, 42(12):4141.
[23] Ouyang J Y, Chu C W, Chen F C, Xu Q F, Yang Y. Adv. Funct. Mater., 2005, 15(2):203.
[24] Stempien Z, Rybicki E, Rybicki T, Kozanecki M. Synth. Met., 2016, 217:276.
[25] Istamboulie G, Sikora T, Jubete E, Ochoteco E, Marty J L, Noguer T. Talanta, 2010, 82(3):957.
[26] Gomes L, Branco A, Moreira T, Feliciano F, Pinheiro C, Costa C. Sol. Energy Mater. Sol. Cells, 2016, 144:631.
[27] Alhashmi Alamer F. J. Alloys Compd., 2017, 702:266.
[28] Liu J, Wang X J, Li D Y, Coates N E, Segalman R A, Cahill D G. Macromolecules, 2015, 48(3):585.
[29] Yeon C, Kim G, Lim J W, Yun S J. RSC Adv., 2017, 7(10):5888.
[30] Ryan J D, Mengistie D A, Gabrielsson R, Lund A, Müller C. ACS Appl. Mater. Interfaces, 2017, 9(10):9045.
[31] Bessaire B, Mathieu M, Salles V, Yeghoyan T, Celle C, Simonato J P, Brioude A. ACS Appl. Mater. Interfaces, 2017, 9(1):950.
[32] Kim J Y, Jung J H, Lee D E, Joo J. Synth. Met., 2002, 126(2/3):311.
[33] Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G, Shinar J. Polymer, 2004, 45(25):8443.
[34] Alemu D, Wei H Y, Ho K C, Chu C W. Energy Environ. Sci., 2012, 5(11):9662.
[35] Fan Z, Du D H, Yu Z M, Li P C, Xia Y J, Ouyang J Y. ACS Appl. Mater. Interfaces, 2016, 8(35):23204.
[36] Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18):2436.
[37] Fan X, Xu B G, Liu S H, Cui C H, Wang J Z, Yan F. ACS Appl. Mater. Interfaces, 2016, 8(22):14029.
[38] Yao B W, Wang H Y, Zhou Q, Wu M M, Zhang M, Li C, Shi G Q. Adv. Mater., 2017, 29(28):1700974.
[39] Kim N, Kang H, Lee J H, Kee S, Lee S H, Lee K. Adv. Mater., 2015, 27(14):2317.
[40] Gueye M N, Carella A, Massonnet N, Yvenou E, Brenet S, Faure-Vincent J, Pouget S, Rieutord F, Okuno H, Benayad A, Demadrille R, Simonato J P. Chem. Mater., 2016, 28(10):3462.
[41] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Adv. Mater., 2014, 26(14):2268.
[42] Wei Q S, Mukaida M, Naitoh Y, Ishida T. Adv. Mater., 2013, 25(20):2831.
[43] Nevrela J, Micjan M, Novota M, Kovacova S, Pavuk M, Juhasz P, Kovac Jr. J, Jakabovic J, Weis M. J. Polym. Sci., Part B:Polym. Phys., 2015, 53(16):1139.
[44] Yin H E, Lee C F, Chiu W Y. Polymer, 2011, 52(22):5065.
[45] Dupont S R, Novoa F, Voroshazi E, Dauskardt R H. Adv. Funct. Mater., 2014, 24(9):1325.
[46] Döbbelin M, Marcilla R, Tollan C, Pomposo J A, Sarasua J R, Mecerreyes D. J. Mater. Chem., 2008, 18(44):5354.
[47] Hossain J, Liu Q M, Miura T, Kasahara K, Harada D, Ishikawa R, Ueno K, Shirai H. ACS Appl. Mater. Interfaces, 2016, 8(46):31926.
[48] Li Y, Mao L, Tang F, Chen Q, Wang Y X, Ye F Y, Chen L, Li Y W, Wu D, Cui Z, Cai J H, Chen L W. Sol. Energy Mater. Sol. Cells, 2015, 143:354.
[49] Zhang H, Xu J K, Wen Y P, Wang Z F, Zhang J, Ding W C. Synth. Met., 2015, 204:39.
[50] Dupont S R, Oliver M, Krebs F C, Dauskardt R H. Sol. Energy Mater. Sol. Cells, 2012, 97:171.
[51] Wei B, Liu J L, Ouyang L Q, Kuo C C, Martin D C. ACS Appl. Mater. Interfaces, 2015, 7(28):15388.
[52] Yohannes T, Inganäs O. Sol. Energy Mater. Sol. Cells, 1998, 51(2):193.
[53] Saito Y, Kitamura T, Wada Y, Yanagida S. Chem. Lett., 2002, 31(10):1060.
[54] 马廷丽(Ma T L), 云斯宁(Yun S N). 染料敏化太阳能电池——从理论基础到技术应用(Dye-Sensitized Solar Cells-Theoretical Basis to Technical Application). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 227.
[55] 赵志强(Zhao Z Q). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2015.
[56] 刘俊琛(Liu J C). 深圳大学硕士论文(Master Dissertation of Shenzhen University), 2016.
[57] Ellis H, Vlachopoulos N, Häggman L, Perruchot C, Jouini M, Boschloo G, Hagfeldt A. Electrochim. Acta, 2013, 107:45.
[58] Yang Y, Lee K, Mielczarek K, Hu W, Zakhidov A. Nanotechnology, 2011, 22(48):485301.
[59] Lee T H, Do K, Lee Y W, Jeon S S, Kim C, Ko J, Im S S. J. Mater. Chem., 2012, 22(40):21624.
[60] Li H G, Xiao Y M, Han G Y, Hou W J. J. Power Sources, 2017, 342:709.
[61] Mukherjee S, Singh R, Gopinathan S, Murugan S, Gawali S, Saha B, Biswas J, Lodha S, Kumar A. ACS Appl. Mater. Interfaces, 2014, 6(20):17792.
[62] Huang D, Goh T H, Kong J, Zheng Y F, Zhao S L, Xu Z, Taylor A D. Nanoscale, 2017, 9(12):4236.
[63] Hu A F, Tan L C, Hu X T, Hu L, Ai Q Y, Meng X C, Chen L, Chen Y W. J. Mater. Chem. C, 2017, 5(2):382.
[64] Shin D, Kim T, Ahn B T, Han S M. ACS Appl. Mater. Interfaces, 2015, 7(24):13557.
[65] Kim Y S, Lee E J, Lee J T, Hwang D K, Choi W K, Kim J Y. RSC Adv., 2016, 6(69):64428.
[66] Hu X T, Chen L, Tan L C, Ji T, Zhang Y, Zhang L, Zhang D, Chen Y W. J. Mater. Chem. A, 2016, 4(17):6645.
[67] Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Carbon, 2016, 98:15.
[68] Li H G, Xiao Y M, Han G Y, Zhang Y. Org. Electron., 2017, 50:161.
[69] Yoon S, Ha T J, Kang D W. Nanoscale, 2017, 9(27):9754.
[70] Kim J M, Kwon W, Rhee S W. Electrochim. Acta, 2015, 161:205.
[71] Lin Y F, Li C T, Ho K C. J. Mater. Chem. A, 2016, 4(2):384.
[72] Yeh M H, Lin L Y, Li Y Y, Chang J, Chen P W, Lee C P, Ho K C. Jpn. J. Appl. Phys., 2012, 51:10NE01.
[73] Huang Y J, Fan M S, Li C T, Lee C P, Chen T Y, Vittal R, Ho K C. Electrochim. Acta, 2016, 211:794.
[74] Luo H, Lin X H, Hou X, Pan L K, Huang S M, Chen X H. Nano-Micro Lett., 2017, 9(4):39.
[75] Liu D Y, Li Y, Yuan J Y, Hong Q M, Shi G Z, Yuan D X, Wei J, Huang C C, Tang J X, Fung M K. J. Mater. Chem. A, 2017, 5(12):5701.
[76] Pringle J M, Armel V, MacFarlane D R. Chem. Commun., 2010, 46(29):5367.
[77] Lee C P, Lai K Y, Lin C A, Li C T, Ho K C, Wu C I, Lau S P, He J H. Nano Energy, 2017, 36:260.
[78] Garcia-Valverde R, Villarejo J A, Hösel M, Madsen M V, Søndergaard R R, Jørgensen M, Krebs F C. Sol. Energy Mater. Sol. Cells, 2016, 144:48.
[79] Zhang J B, Vlachopoulos N, Jouini M, Johansson M B, Zhang X L, Nazeeruddin M K, Boschloo G, Johansson E M J, Hagfeldt A. Nano Energy, 2016, 19:455.
[80] Wang J, Fei F, Luo Q, Nie S H, Wu N, Chen X L, Su W M, Li Y J, Ma C Q. ACS Appl. Mater. Interfaces, 2017, 9(8):7834.
[81] 王佳(Wang J). 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2016.
[82] 李盛彪(Li S B), 张晔(Zhang Y), 牛巧莉(Niu Q L), 赵雷(Zhao L), 范曲立(Fan Q L), 彭波(Peng B), 朱旭辉(Zhu X H), 曹镛(Cao Y), 黄维(Huang W). 化学学报(Acta Chim. Sinica), 2006, 64(24):2509.
[83] Wang J, Zhang H, Ji W, Zhang H Z. Synth. Met., 2015, 209:484.
[84] Yousefi M H, Fallahzadeh A, Saghaei J, Darareh M D. J. Disp. Technol., 2016, 12(12):1647.
[85] Wu X K, Liu J, He G F. Org. Electron., 2015, 22:160.
[86] 赵丹(Zhao D), 徐登辉(Xu D H), 杨在发(Yang Z F), 曹伟强(Cao W Q). 发光学报(Chin. J. Lumin.), 2016, 37(2):174.
[87] Li Y D, Liu M Y, Li Y, Yuan K, Xu L J, Yu W, Chen R F, Qiu X Q, Yip H L. Adv. Energy Mater., 2017, 7(6):1601499.
[88] Kim J H, Joo C W, Lee J, Seo Y K, Han J W, Oh J Y, Kim J S, Yu S, Lee J H, Lee J I, Yun C, Choi B H, Kim Y H. Macromol. Rapid Commun., 2016, 37(17):1427.
[89] Seo Y K, Joo C W, Lee J, Han J W, Lee D J, Entifar S A N, Kim S, Cho N S, Kim Y H. J. Lumin., 2017, 187:221.
[90] Montanino M, Sico G, Prontera C T, De Girolamo Del Mauro A, Aprano S, Maglione M G, Minarini C. eXPRESS Polym. Lett., 2017, 11(6):518.
[91] Kim Y Y, Hyun W J, Park K H, Ye S J, Park O O. Korean J. Chem. Eng., 2015, 32(3):534.
[92] Liu Y S, Feng J, Ou X L, Cui H F, Xu M, Sun H B. Org. Electron., 2016, 31:247.
[93] Wei B W, Wu X K, Lian L, Yang S, Dong D, Feng D X, He G F. Org. Electron., 2017, 43:182.
[94] 杨君礼(Yang J L), 武聪伶(Wu C L), 李源浩(Li Y H), 李菀丽(Li W L), 苗艳勤(Miao Y Q), 郭鹍鹏(Guo K P), 刘慧慧(Liu H H), 王华(Wang H), 吴永安(Wu Y A). 物理化学学报(Acta Phys. -Chim. Sin.), 2015, 31(2):377.
[95] Wu X K, Lian L, Yang S, He G F. J. Mater. Chem. C, 2016, 4(36):8528.
[96] Kim J, Kanwat A, Kim H M, Jang J. Phys. Status Solidi A, 2015, 212(3):640.
[97] Kim H M, Kim J, Lee J, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(44):24592.
[98] Gupta N, Grover R, Mehta D S, Saxena K. Displays, 2015, 39:104.
[99] Gupta N, Grover R, Mehta D S, Saxena K. Synth. Met., 2016, 221:261.
[100] Zhang H, Sun X W, Chen S M. Adv. Funct. Mater., 2017, 27(21):1700610.
[101] Bade S G R, Shan X, Hoang P T, Li J Q, Geske T, Cai L, Pei Q B, Wang C, Yu Z B. Adv. Mater., 2017, 29(23):1607053.
[102] Zhang X W, You F J, Liu S Q, Mo B J, Zhang Z L, Xiong J, Cai P, Xue X G, Zhang J, Wei B. Appl. Phys. Lett., 2017, 110(4):043301.
[103] 张航川(Zhang H C). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Techonology), 2015.
[104] 腊明(La M), 刘平(Liu P), 邓文基(Deng W J). 化学进展(Prog. Chem.), 2009, 21(6):1268.
[105] Pei Q B, Zuccarello G, Ahlskog M, Inganäs O. Polymer, 1994, 35(7):1347.
[106] Kawahara J, Ersman P A, Engquist I, Berggren M. Org. Electron., 2012, 13(3):469.
[107] Augusto T, Teixeira Neto É, Teixeira Neto A A, Vichessi R, Vidotti M, de Torresi S I C. Sol. Energy Mater. Sol. Cells, 2013, 118:72.
[108] Cao Y, Tao Y J, Cheng H F, Zhang Z Y. J. Appl. Polym. Sci., 2013, 129(6):3764.
[109] Zhang Z Y, Tao Y J, Xu X Q, Zhou Y J, Cheng H F, Zheng W W. J. Appl. Polym. Sci., 2013, 129(3):1506.
[110] Singh R, Tharion J, Murugan S, Kumar A. ACS Appl. Mater. Interfaces, 2017, 9(23):19427.
[111] Zhang H C, Qu H Y, Lv H M, Hou S, Zhang K, Zhao J P, Li X G, Frank E, Li Y. Chem. -Asian J., 2016, 11(20):2882.
[112] Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P. J. Mater. Chem. C, 2017, 5(23):5824.
[113] 秦咪咪(Qin M M), 李昕(Li X), 郑一平(Zheng Y P), 张焱(Zhang Y), 李从举(Li C J). 化学学报(Acta Chim. Sinica), 2015, 73(11):1161.
[114] Fonseca S M, Moreira T, Parola A J, Pinheiro C, Laia C A T. Sol. Energy Mater. Sol. Cells, 2017, 159:94.
[115] Ling H, Lu J L, Phua S, Liu H, Liu L, Huang Y Z, Mandler D, Lee P S, Lu X H. J. Mater. Chem. A, 2014, 2(8):2708.
[116] Ling H, Liu L, Lee P S, Mandler D, Lu X. Electrochim. Acta, 2015, 174:57.
[117] Nguyen T T N, Chan C Y, He J L. Thin Solid Films, 2016, 603:276.
[118] Dulgerbaki C, Nohut Maslakci N, Komur A I, Uygun Oksuz A. Electroanalysis, 2016, 28(8):1873.
[119] Qu H Y, Zhang X, Zhang H C, Tian Y L, Li N, Lv H M, Hou S, Li X G, Zhao J P, Li Y. Sol. Energy Mater. Sol. Cells, 2017, 163:23.
[120] Cai G F, Darmawan P, Cui M Q, Wang J X, Chen J W, Magdassi S, Lee P S. Adv. Energy Mater., 2016, 6(4):1501882.
[121] Kateb M, Safarian S, Kolahdouz M, Fathipour M, Ahamdi V. Sol. Energy Mater. Sol. Cells, 2016, 145:200.
[122] Karaca G Y, Eren E, Alver C, Koc U, Uygun E, Oksuz L, Oksuz A U. Electroanalysis, 2017, 29(5):1324.
[123] 吕耀康(Lv Y K), 刘幼幼(Liu Y Y), 潘云(Pan Y), 刘刚(Liu G), 陈钧(Chen J), 郭芸(Guo Y), 初文静(Chu W J), 慎炼(Shen L), 张诚(Zhang C). 高等学校化学学报(Chem. J. Chin. Univ.), 2017, 38(3):484.
[124] Kai H, Suda W, Ogawa Y, Nagamine K, Nishizawa M. ACS Appl. Mater. Interfaces, 2017, 9(23):19513.
[125] 张思航(Zhang S H), 何永锋(He Y F), 付润芳(Fu R F), 蒋洁(Jiang J), 李晴碧(Li Q B), 顾迎春(Gu Y C), 陈胜(Chen S). 高等学校化学学报(Chem. J. Chin. Univ.), 2017, 38(6):1090.
[126] Carlberg J C, Inganäs O. J. Electrochem. Soc., 1997, 144(4):L61.
[127] Higgins T M, Coleman J N. ACS Appl. Mater. Interfaces, 2015, 7(30):16495.
[128] Zhou W Q, Xu J K. Electrochim. Acta, 2016, 222:1895.
[129] Yuan D M, Li B, Cheng J L, Guan Q, Wang Z P, Ni W, Li C, Liu H, Wang B. J. Mater. Chem. A, 2016, 4(30):11616.
[130] Yang H, Liu Y, Wang Z D, Liu Y M, Du H Y, Hao X G. J. Appl. Polym. Sci., 2016, 133(20):43418.
[131] Vellacheri R, Zhao H P, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Adv. Funct. Mater., 2017, 27(18):1606696.
[132] Liu A D, Kovacik P, Peard N, Tian W, Goktas H, Lau J, Dunn B, Gleason K K. Adv. Mater., 2017, 29(19):1606091.
[133] Zhou H H, Han G Y, Fu D Y, Chang Y Z, Xiao Y M, Zhai H J. J. Power Sources, 2014, 272:203.
[134] Lee H U, Kim S W. J. Mater. Chem. A, 2017, 5(26):13581.
[135] Zhang N, Zhou W Y, Zhang Q, Luan P S, Cai L, Yang F, Zhang X, Fan Q X, Zhou W B, Xiao Z J, Gu X G, Chen H L, Li K W, Xiao S Q, Wang Y C, Liu H P, Xie S S. Nanoscale, 2015, 7(29):12492.
[136] Karade S S, Sankapal B R. J. Electroanal. Chem., 2016, 771:80.
[137] Zhao D W, Zhang Q, Chen W S, Yi X, Liu S X, Wang Q W, Liu Y X, Li J, Li X F, Yu H P. ACS Appl. Mater. Interfaces, 2017, 9(15):13213.
[138] Cho S, Kim M, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(19):10213.
[139] Zhang C F, Higgins T M, Park S H, O'Brien S E, Long D H, Coleman J N, Nicolosi V. Nano Energy, 2016, 28:495.
[140] Chen Y, Xu J H, Yang Y J, Zhao Y T, Yang W Y, Mao X L, He X, Li S B. Electrochim. Acta, 2016, 193:199.
[141] Moussa M, Shi G, Wu H, Zhao Z H, Voelcker N H, Losic D, Ma J. Mater. Des., 2017, 125:1.
[142] Lee H U, Yin J L, Park S W, Park J Y. Synth. Met., 2017, 228:84.
[143] Yang H L, Xu H H, Li M, Zhang L, Huang Y H, Hu X L. ACS Appl. Mater. Interfaces, 2016, 8(3):1774.
[144] Li Y N, Ren G Y, Zhang Z Q, Teng C, Wu Y Z, Lu X Y, Zhu Y, Jiang L. J. Mater. Chem. A, 2016, 4(44):17324.
[145] Xie Y B, Du H X, Xia C. Microporous Mesoporous Mater., 2015, 204:163.
[146] Ge Y, Jalili R, Wang C Y, Zheng T, Chao Y F, Wallace G G. Electrochim. Acta, 2017, 235:348.
[147] Zhang M, Han D H, Lu P X. Electrochim. Acta, 2017, 238:330.
[148] Cho B, Park K S, Baek J, Oh H S, Koo Lee Y E, Sung M M. Nano Lett., 2014, 14(6):3321.
[149] Mayousse C, Celle C, Carella A, Simonato J P. Nano Research, 2014, 7(3):315.
[150] Fan Z, Du D H, Yao H Y, Ouyang J Y. ACS Appl. Mater. Interfaces, 2017, 9(13):11732.
[151] Beretta D, Barker A J, Maqueira-Albo I, Calloni A, Bussetti G, Dell'Erba G, Luzio A, Duò L, Petrozza A, Lanzani G, Caironi M. ACS Appl. Mater. Interfaces, 2017, 9(21):18151.
[152] Chong B H, Zhu W, Hou X H. J. Mater. Chem. A, 2017, 5(13):6233.
[153] 郭亚芳(Guo Y F). 天津大学硕士论文(Master Dissertation of Tianjin University), 2010.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[4] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[5] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[6] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[7] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[8] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[9] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[10] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[11] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[14] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[15] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.