中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 439-447 DOI: 10.7536/PC170746 Previous Articles   Next Articles

• Review •

Applications of Graphene in Composite Thermoelectric Materials

Xinmin He1,2, Ting Zhang1*, Fei Chen1, Jun Jiang3   

  1. 1. Department of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    2. Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51501014), the Scientific and Technological Program of Beijing Municipal Education Commission (No. KM201610017005), the Talents Project of Beijing Municipal Organization Department (No. 2015000020124G062), and the Undergraduates Research Training Program of Beijing (No. 2017J00059).
PDF ( 2051 ) Cited
Export

EndNote

Ris

BibTeX

Thermoelectric materials are one kind of functional materials, which can realize the direct conversion between electrical energy and thermal energy, and have wide applications in the fields of thermoelectric power generation and refrigeration. Graphene is a two-dimensional carbon material of a single atomic layer with special crystal structure and excellent physical and chemical properties. Many research demonstrate that the excellent electrical performance, large surface and various boundary structures of graphene can optimize the electrical and thermal performance of materials, making graphene of great application potentials in the field of thermoelectrics. In this paper, based on the characteristics of thermoelectric materials and graphene, the relationship of structure and performance of graphene when graphene itself is researched as thermoelectric material is reviewed. The effect of graphene on the microstructure and performances of conventional inorganic thermoelectric materials and conducting polymer thermoelectric materials when graphene is used to form nanocomposites with these thermoelectric materials are also summarized. In addition, the exiting problems and further outlook of the applications of graphene in the field of thermoelectric are discussed.
Contents
1 Introduction
2 Structure and property of graphene
3 Thermoelectric performance of graphene itself
4 Application of graphene in other thermoelectrics as composite
4.1 Nanocomposites of graphene and conventional inorganic thermoelectrics
4.2 Nanocomposites of graphene and conductive polymer thermoelectrics
5 Conclusion

CLC Number: 

[1] Xi H X, Luo L G, Fraisse G. Renew. Sust. Energ. Rev., 2007, 11:923.
[2] Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sust. Energ. Rev., 2010, 14:312.
[3] Omer A M. Renew. Sust. Energ. Rev., 2008, 12:2331.
[4] Qiu P F, Shi X, Chen L D. Energy Storage Materials, 2016, 3:85.
[5] Sales B C. Science, 2002, 295:1248.
[6] Bell L E. Science, 2008, 321:1457.
[7] Hébert S, Flahaut D, Martin C, Lemonnier S, Noudem J, Goupil C, Maignan A, Hejtmanek J. Prog. Solid State Chem., 2017, 35:457.
[8] Orr B, Akbarzadeh A, Mochizuki M, Singh R. Appl. Therm. Eng., 2016, 101:490.
[9] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T. Int. Mater. Rev., 2003, 48:45.
[10] Yang J H, Caillat T. MRS Bull., 2006, 31:224.
[11] Dai D, Zhou Y X, Liu J. Renew. Energ., 2011, 36:3530.
[12] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G. Adv. Mater., 2010, 22:3970.
[13] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M. Nature, 2012, 489:414.
[14] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Energ. Environ. Sci., 2011, 5:5147.
[15] Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke, D R. Chem. Mater., 2013, 25:2911.
[16] Tan G J, Zhao L D, Kanatzidis M G. Chem. Rev., 2016, 116:12123.
[17] May A F, Singh D J, Snyder G J. Phys. Rev. B, 2016, 79:897.
[18] Lan Y C, Minnich A J, Chen G, Ren Z F. Adv. Funct. Mater., 2010, 20:357.
[19] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433.
[20] 刘灰礼(Liu H L), 何颖(He Y), 史迅(Shi X), 郭向欣(Guo X X), 陈立东(Chen L D). 科学通报(Chinese Science Bulletin), 2013, 58(25):2603.
[21] Karamitaheri H, Neophytou N, Pourfath M, Faez R, Kosina H. J. Appl. Phys., 2012, 111:054501.
[22] 柏嵩(Bai S), 沈小平(Shen X P).化学进展(Progress in Chemistry), 2010, 22(11):2106.
[23] Lundeberg M B, Gao Y D, Woessner A, Tan C, Alonso-González P, Watanabe K, Taniguchi T, Hone J, Hillenbrand R, Koppens F H. Nat. Mater., 2017, 16:204.
[24] Dey A, Bajpai O P, Sikder A K, Chattopadhyay S, Khan M A S. Renew. Sust. Energ. Rev., 2016, 53:653.
[25] Geim A K. Science, 2009, 324:1530.
[26] Li D, Kaner R B. Science, 2008, 320:1170.
[27] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442:282.
[28] Katsnelson M I. Mater. Today, 2007, 10:20.
[29] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2010, 110:132.
[30] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[31] Koskinen P, Malola S, Häkkinen H. Phys. Rev. B, 2009, 80:073401.
[32] Ouyang T, Chen Y P, Xie Y E, Yang K K, Zhong J X. Solid State Commun., 2010, 150:2366.
[33] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[34] Bolotin K I, Sikes K J, Jiang Z F, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146:351.
[35] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Nat. Nanotechnol., 2008, 3:206.
[36] Rao C N R, Sood A K, Voggu R, Subrahmanyam K S. J. Phys. Chem. Lett., 2010, 1:572.
[37] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.
[38] 康怡然(Kang Y R), 蔡锋(Cai F), 陈宏源(Chen H Y), 陈名海(Chen M H),张锐(Zhang R), 李清文(Li Q W).化学进展(Progress in Chemistry), 2014, 26(09):1562.
[39] Dragoman D, Dragoman M. Appl. Phys. Lett., 2007, 91:203116.
[40] Ouyang Y J, Guo J. Appl. Phys. Lett., 2009, 94:263107.
[41] Mazzamuto F, Nguyen V H, Apertet Y, Caer C, Chassat C, Martin J S, Dollfus P. Phys. Rev. B, 2011, 83:235426.
[42] Sevinçli H, Cuniberti G. Phys. Rev. B, 2010, 81:113401.
[43] Sevinçli H, Sevik C, Cagin T, Cuniberti G. Sci. Rep., 2013, 3:1228.
[44] Bae E J, Kang Y H, Lee C, Cho S Y. J. Mater. Chem. A, 2017, 5:17867.
[45] Wang T Z, Liu C C, Jiang F X, Xu Z F, Wang X D, Li X, Li C C, Xu J K, Yang X W. Phys. Chem. Chem. Phys., 2017, 19:17560.
[46] Wang L M, Bi H, Yao Q, Ren D D, Qu S Y, Huang F Q, Chen L D. Compos. Sci. Technol., 2017, 150:135.
[47] Xiong J H, Jiang F X, Shi H, Xu J K, Liu C C, Zhou W Q, Jiang Q L, Zhu Z Y, Hu Y J. ACS Appl. Mater. Interfaces, 2015, 7:14917.
[48] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[49] Agarwal K, Kaushik V, Varandani D, Dhar A, Mehta B R. J. Alloys Compd., 2016, 681:394.
[50] Li A H, Shahbazi M, Zhou S H, Wang G X, Zhang C, Jood P, Peleckis G, Du Y, Cheng Z X, Wang X L, Kuo Y K. Thin Solid Films, 2010, 518:e57.
[51] Liang B B, Song Z J, Wang M H, Wang L J, Jiang W. Journal of Nanomaterials, 2013, 210767.
[52] Ju H, Kim J H. Dalton Trans., 2015, 44:11755.
[53] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J. ACS Appl. Mater. Interfaces, 2013, 5:3071.
[54] Feng B, Xie J, Cao G S, Zhu T J, Zhao X B. J. Mater. Chem. A, 2013, 1:13111.
[55] Dong J D, Liu W, Li H, Su X L, Tang X F, Uher C. J. Mater. Chem. A, 2013, 1:12503.
[56] Du Y, Shen S Z, Yang W D, Donelson R, Cai K F, Casey P S. Synth. Met., 2012, 161:2688.
[57] Ansari M O, Khan M M, Ansari S A, Amal I, Lee J, Cho M H. Mater. Lett., 2014, 114:159.
[58] Rahman A A A, Umar A A, Chen X M, Salleh M M, Oyama M. Appl. Phys. A, 2016, 122:133.
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[3] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[7] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[8] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[9] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[10] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[11] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[12] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[13] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[14] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.