中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 420-428 DOI: 10.7536/PC170745 Previous Articles   Next Articles

• Review •

Reductive Debromination and Advanced Oxidation of Polybrominated Diphenyl Ethers(PBDEs) Using Zero-Valent Iron(ZVI) Based Materials

Yang Wu1,2, Yu Wang1,2, Rongliang Qiu1,2, Xin Yang1,2*   

  1. 1. School of Environmental Science & Technology, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (No. 2015CB459000) and the National Natural Science Foundation of China (No. 21577178, 21622706).
PDF ( 919 ) Cited
Export

EndNote

Ris

BibTeX

Polybrominated diphenyl ethers(PBDEs) are a group of persistent organic pollutants which have attracted a lot of concern because of their unreasonable use and disposal. Efforts have been paid to developing techniques to rapidly degrade PBDEs, among which the application of zero-valent iron(ZVI) has been found effective because of the reducibility and the ability of activating advanced oxidation processes(AOPs). In this paper, the research on degradation of PBDEs by ZVI are summarized, and the mechanism, kinetics, influencing factors and degradation pathways are reviewed. Although ZVI can be effectively used as direct electron donors for debromination of highly-brominated DEs, the resultant lower brominated DEs are more toxic and generally need further treatment. On the other hand, recent studies indicate ZVI could be used as indirect electron donors by inducing heterogeneous Fenton systems or persulfate(PS) systems to produce reactive oxygen species (ROS), which could degrade lower brominated DEs through ring opening. Therefore, the integration of ZVI and Fenton systems or persulfate systems by constituting two-stage reduction/subsequent oxidation treatment may be a solution for complete ring-opening degradation of highly-brominated DEs. Besides, further research on PBDEs degradation based on ZVI technology is discussed.
Contents
1 Introduction
2 Mechanism of PBDEs reductive debromination by ZVI
2.1 Mechanism of PBDEs reduction by ZVI
2.2 Mechanism of PBDEs reduction by bimetallic systems
2.3 Products and pathways of PBDEs debromination in ZVI reaction system
3 PBDEs reductive debromination by modified-ZVI
3.1 nZVI
3.2 Surface stabilized-nZVI
4 Kinetics of PBDEs reductive debromination
5 Influencing factors of PBDEs reductive debromination
5.1 pH
5.2 Organic matters
5.3 Metal cation
6 Reduction and advanced oxidation of PBDEs based on ZVI
7 Conclusion

CLC Number: 

[1] Lyche J L, Rosseland C, Berge G, Polder A. Environ. Int., 2015, 74:170.
[2] Law R J, Covaci A, Harrad S, Herzke D, Abdallah M, Femie K, Toms L, Takigami H. Environ. Int., 2014, 65:147.
[3] Lake L R, Foxall C D, Fernandes A, Lewis M, Rose M, White O, Dowding A. Environ. Sci. Technol., 2011, 45:5017.
[4] Wu J P, Luo X J, Zhang Y, Chen S J, Mai B X, Guan Y T, Yang Z Y. Environ. Sci. Technol., 2009, 43:5212.
[5] Pan Y H, Tsang D C W, Wang Y Y, Li Y, Yang X. Chem. Eng. J., 2016, 297:74.
[6] Dingemans M M L, Berg M, Westerink R H S. Environ. Health. Persp., 2011, 119:900.
[7] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39:2280.
[8] Santos M S F, Alves A, Madeira L M. Water. Res., 2016, 88:39.
[9] Altarawneh M, Dlugogorski B Z. Environ. Sci. Technol., 2013, 47:5118.
[10] Xiong X M, Sun B, Zhang J, Gao N Y, Shen J M, Li J L, Guan X H. Water. Res., 2014, 62:53.
[11] Li B Z, Zhu J. Chem. Eng. J., 2014, 255:225.
[12] Upadhyayula V K, Deng S G, Mitchell M C, Smith G B. Sci. Total. Environ., 2009, 408:1.
[13] Matheson L J, Tratnyek P G. Environ. Sci. Technol., 1994, 28:2045.
[14] Boronina T N, Lagadic I, Sergeev G B, Klabunde K J. Environ. Sci. Technol., 1998, 32:2614.
[15] Boronina T, Klabunde K J, Sergeev G. Environ. Sci. Technol., 1995, 29:1511.
[16] O'Loughlin E J, Kemner K M, Burris D R. Environ. Sci. Technol., 2003, 37:2905.
[17] Doong R A, Wu S C. Chemosphere, 1992, 24:1063.
[18] Sun Y K, Li J X, Huang T L, Guan X H. Water. Res., 2016, 100:277.
[19] O'Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Adv. Water Resour., 2013, 51:104.
[20] Chun C L, Baer D R, Matson D W, Amonette J E, Penn R L. Environ. Sci. Technol., 2010, 44:5079.
[21] Liou Y H, Lo S L, Lin C J, Kuan W H, Weng S C. J. Hazard Mater., 2005, 127:102.
[22] Stefaniuk M, Oleszczuk P, Ok Y S. Chem. Eng. J., 2016, 287:618.
[23] Yan W, Lien H L, Koel B E, Zhang W X. Environ. Sci-Proc. Imp., 2013, 15:63.
[24] Zhuang Y A, Jin L T, Luthy R G. Chemosphere, 2012, 89:426.
[25] Fang Z Q, Qiu X H, Chen J H, Qiu X Q. J. Hazard Mater., 2011, 185:958.
[26] Ni S Q, Yang N. J. Colloid Interf. Sci., 2014, 420:158.
[27] Xie Y Y, Fang Z Q, Cheng W, Tsang P E, Zhao D Y. Sci. Total. Environ., 2014, 485:363.
[28] Tan L, Liang B, Cheng W, Fang Z Q, Tsang E P. Environ. Sci. Pollut. Res., 2016, 23:22172.
[29] Liu Z T, Gu C G, Ye M, Bian Y R, Cheng Y W, Wang F, Yang X L, Song Y, Jiang X. J. Hazard Mater., 2015, 298:328.
[30] Zhuang Y A, Ahn S, Seyfferth A L, Masue S Y, Fendorf S, Luthy R G. Environ. Sci. Technol., 2011, 45:4896.
[31] Lv Y C, Zhang Z, Chen Y C, Hu Y Y. Chem. Eng. J., 2016, 289:382.
[32] Luo S, Yang S G, Sun C, Gu J D.Sci. Total. Environ., 2012, 429:300.
[33] Luo S, Yang S G, Xue Y G, Liang F, Sun C. J. Hazard Mater., 2011, 192:1795.
[34] Yang F, Li Q Q, Su G J, Huang X C, Li B K, Zhao Y H, Miao X, Zheng M H. Chemosphere, 2016, 150:445.
[35] Zhuang Y A, Ahn S, Luthy R G. Environ. Sci. Technol., 2010, 44:8236.
[36] Li A, Tai C, Zhao Z S, Wang Y W, Zhang Q H, Jiang G B, Hu J T. Environ. Sci. Technol., 2007, 41:6841.
[37] Shih Y H, Tai Y T. Chemosphere, 2010, 78:1200.
[38] Hu J W, Zhuang Y, Luo J, Wei X H, Huang X F. Int. J. Mol. Sci., 2012, 13:9332.
[39] Qiu X H, Fang Z Q, Liang B, Gu F L, Xu Z C. J. Hazard Mater., 2011, 193:70.
[40] Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46:4576.
[41] Fang Z Q, Qiu X H, Chen J H, Qiu X Q. Desalination, 2011, 267:34.
[42] Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222:331.
[43] 杨雨寒(Yang Y H), 徐伟伟(Xu W W), 彭思侃(Peng S K), 卢善富(Lu S F), 相艳(Xiang R), 梁大为(Liang D W). 环境科学(Environmental Science), 2014, 35(3):964.
[44] 邱心泓(Qiu X H), 方战强(Fang Z Q). 化学进展(Progress in Chemistry), 2010, 22(02/03):291.
[45] Liu W J, Qian T T, Jiang H. Chem. Eng. J., 2014, 236:448.
[46] Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50:7290.
[47] Li L Y, Hu J W, Shi X D, Fan M Y, Luo J, Wei X H. Environ. Sci. Pollut. R., 2016, 23:17880.
[48] Zhao X, Liu W, Cai Z Q, Han B, Qian T W, Zhao D Y. Water Res., 2016, 100:245.
[49] He F, Zhao D Y, Liu J C, Roberts C B. Ind. Eng. Chem. Res., 2007, 46:29.
[50] He F, Zhao D Y. Environ. Sci. Technol., 2005, 39:3314.
[51] 庞龙(Pang L), 周庆祥(Zhou Q X), 苏现伐(Su X F). 化工进展(Chem. Ind. Eng. Prog.), 2011, 30(6):1361.
[52] Liang D W, Yang Y H, Xu W W, Peng S K, Lu S F, Xiang Y. J. Hazard Mater., 2014, 278:592.
[53] Chang C, Lian F, Zhu L Y. Environ. Pollut., 2011, 159:2507.
[54] Shukla P R, Wang S B, Sun H Q, Ang H M, Tade M. Appl. Catal. B-Environ., 2010, 100:529.
[55] Fan M D, Yuan P, Chen T H, He H P, Yuan A H, Chen K M, Zhu J X, Liu D. Chin. Sci. Bull., 2010, 55:1092.
[56] Fan M D, Yuan P, Zhu J X, Chen T H, Yuan A H, He H P, Chen K M, Liu D. J. Magn. Magn. Mater., 2009, 321:3515.
[57] Zhang X, Lin S, Chen Z L, Megharaj M, Naidu R. Water Res., 2011, 45:3481.
[58] Tan L, Lu S Y, Fang Z Q, Cheng W, Tsang E P. Appl. Catal. B-Environ., 2017, 200:200.
[59] Yu K, Gu C, Boyd S A, Liu C, Sun C, Teppen B J, Li H. Environ. Sci. Technol., 2012, 46:8969.
[60] Pang Z H, Yan M Y, Jia X S, Wang Z X, Chen J Y. J. Environ. Sci-China, 2014, 26:483.
[61] Fu R B, Xu Z, Peng L, Bi D S. Environ. Sci. Pollut. Res., 2016, 23:23983.
[62] Wu J, Yi Y Q, Li Y Q, Fang Z Q, Tsang E P. J. Hazard Mater., 2016, 320:341.
[63] Wang L C, Ni S Q, Guo C L, Qian Y T. J. Mater. Chem. A, 2013, 1:6379.
[64] Xie Y Y, Cheng W, Tsang P E, Fang Z Q. J. Environ. Manage., 2016, 166:478.
[65] Peng Y H, Chen M K, Shih Y H. J. Hazard Mater., 2013, 260:844.
[66] Tan L, Liang B, Fang Z Q, Xie Y Y, Tsang E P. J. Nanopart. Res., 2014, 16:2786.
[67] Cai Y L, Liang B, Fang Z Q, Xie Y Y, Tsang E P. Front. Env. Sci. Eng., 2015, 9:879.
[68] Fu F L, Dionysiou D D, Liu H. J. Hazard Mater., 2014, 267:194.
[69] Li X Q, Zhang W X. J. Phys. Chem. C, 2007, 111:6939.
[70] Karabelli D, Uzum C, Shahwan T, Eroglu A E, Scott T B, Hallam K R, Lieberwirth I. Ind. Eng. Chem. Res., 2008, 47:4758.
[71] 明磊强(Ming L Q), 何义亮(He Y L), 章敏(Zhang M), 许振成(Xu Z C), 张小凡(Zhang X F). 净水技术(Water Purif. Technol.), 2010, 29(2):49.
[72] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42:1262.
[73] Su Y F, Hsu C Y, Shih Y H. Chemosphere, 2012, 88:1346.
[74] Kim E J, Kim J H, Kim J H, Bokare V, Chang Y S. Sci. Total Environ., 2014, 470:1553.
[75] Zhou J, Chen J W, Liang C H, Xie Q, Wang Y N, Zhang S Y, Qiao X L, Li X H. Environ. Sci. Technol., 2011, 45:4839.
[76] Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47:518.
[77] Huang A Z, Zhang Z M, Wang N, Zhu LH, Zou J. J. Hazard Mater., 2016, 302:158.
[78] Bastos P M, Eriksson J, Vidarson J, Bergman A. Environ. Sci. Pollut. Res., 2008, 15:606.
[79] Shi J Q, Qu R J, Feng M B, Wang X H, Wang L S, Yang S G, Wang Z Y. Environ. Sci. Technol., 2015, 49:4209.
[80] Cao H J, He M X, Han D D, Sun Y H, Zhao S F, Ma H J, Yao S D. Comput. Theor. Chem., 2012, 983:31.
[81] Cao H J, He M X, Han D D, Sun Y H, Xie J. Atmos. Environ., 2011, 45:1525.
[82] Cao H J, He M X, Han D D, Li J, Li M Y, Wang W X, Yao S D. Environ. Sci. Technol., 2013, 47:8238.
[83] Wang Y, Chen S Y, Yang X, Huang X F, Yang Y H, He E K, Wang S, Qiu R L. Chem. Eng. J., 2017, 317:613.
[1] Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*. Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2017, 29(9): 911-918.
[2] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[3] . Advances on Study of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2009, 21(0203): 359-368.
[4]

Fang Lei|Huang Jun|Yu Gang**

. Photochemical Degradation of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2008, 20(0708): 1180-1186.