中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1462-1470 DOI: 10.7536/PC170742 Previous Articles   Next Articles

• Review •

Tridentate Titanium Precatalysts Toward Olefin Polymerization

Shifang Yuan1,2,3*, Lijing Wang1,2, Qiuyue Zhang2,3, Wenhua Sun3*   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China;
    2. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
    3. Key Laboratory of Engineering Plastics, lnstitute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21101101, U1362204) and the Scientific Instrument Center of Shanxi University.
PDF ( 681 ) Cited
Export

EndNote

Ris

BibTeX

Titanium-based catalysts have been not only providing major catalyses in conventionally producing massive polyolefins with low cost as well as good properties, but also advancing the properties of new polyolefins for new plastic materials. Therefore it has been a core consideration of finely tuning the structures of titanium complexes and enhancing catalytic performances of the olefin polymerization. Besides metallocene catalysts, titanium complexes bearing multi-dentate ligands have been maintained as hot topics, in which tridentate ligands positively stabilize titanium complexes. Meanwhile variations of coordination atoms of those ligands greatly enrich the syntheses and manipulation of the catalytic activity of complexes, therefore controlling the polymerization activity as well as improving the microstructures and properties of resultant polyolefin materials. Herein the recent progress of titanium complexes bearing tridentate ligands have been reviewed toward olefin polymerization, focusing on the electronic and steric influences of substituents within ligands on their catalytic activities and properties of resultant polyolefins. The observations would be helpful to design titanium complexes and correlations between activities of complexes and structures of ligands used.
Contents
1 Introduction
2 Titanium complexes
2.1 Half-titanocene complexes
2.2 Cp-containing Schiff-base titanium complexes
2.3 Complexes based on C, N, X imine ligands
2.4 Complexes based on O, P, N imine ligands
2.5 Complexes based on O, S, N imine ligands
2.6 Complexes based on O, N, N imine ligands
2.7 Complexes based on O, N, O imine ligands
2.8 Complexes based on N, C, N imine ligands
2.9 Complexes based on N, N, S imine ligands
2.10 Bis(aryloxide)s with one additional donors
2.11 Bis(aryloxide)s with two additional donors
2.12 Complexes with other ligands
3 Conclusion

CLC Number: 

[1] Peng D Q, Yan X W, Yu C, Zhang S W, Li X F. Polym. Chem., 2016, 7:2601.
[2] Redshaw C, Tang Y. Chem. Soc. Rev., 2012, 41:4484.
[3] 袁世芳(Yuan S F),牛春霞(Niu C X),魏学红(Wei X H),孙文华(Sun W H).化学进展(Progress in Chemistry), 2016, 28(7):1070.
[4] 黄伟(Huang W),张文娟(Zhang W J),孙文华(Sun W H).高分子通报(Chinese Polymer Bulletin), 2011, 63.
[5] 左伟伟(Zuo W W),孙文华(Sun W H).高分子通报(Chinese Polymer Bulletin), 2009, (04):1.
[6] Makio H, Terao H, Iwashita A, Fujita T. Chem. Rev., 2011, 111:2363.
[7] Nomura K, Zhang S. Chem. Rev., 2011, 111:2342.
[8] Wu J Q, Li Y S. Coord. Chem. Rev., 2011, 255:2303.
[9] Jonas Z. Coord. Chem. Rev., 2010, 254:2227.
[10] Nakata N, Toda T, Ishii A. Polym. Chem., 2011, 2:1597.
[11] Huang Q C, Qian Y L, Li G S, Tang Y Q. Transition Met. Chem., 1990, 15:483.
[12] Flores J C, Chien J C W, Rausch M D. Organometallics, 1994, 13:4140.
[13] Blais M S, Chien J C W, Rausch M D. Organometallics, 1998, 17:3775.
[14] Amor F, Butt A, du Plooy K E, Spaniol T P, Okuda J. Organometallics, 1998, 17:5836.
[15] Cano J, Royo P, Lanfranchi M,Pellinghelli M A, Tiripicchio A. Angew. Chem. Int. Ed., 2001, 40:2495.
[16] Huang J L, Lian B, Qian Y L, Zhou W Z, Chen W, Zheng G. Macromolecules, 2002, 35:4871.
[17] Zhang J, Lin Y J, Jin G X. Organometallics, 2007, 26:4042.
[18] Huang W, Li B X, Wang Y H, Zhang W J, Wang L, Li Y S, Sun W. H, Redshaw C. Catal. Sci. Technol., 2011, 1:1208.
[19] Huang W, Sun W H, Redshaw C. Dalton Trans., 2011, 40:6802.
[20] Tam K H, Lo J C Y, Guo Z Q, Chan M C W. J. Organomet. Chem., 2007, 692:4750.
[21] Lo J C Y, Chan M C W, Lo P, K Lau K C, Ochiai T, Makio H. Organometallics, 2013, 32:449.
[22] McGuinness D S, Gibson V C, Steed J W. Organometallics, 2004, 23:6288.
[23] Hu W G, Sun X L, Wang C, Gao Y, Tang Y, Shi L P, Xie W, Sun J, Dai H L, Li X Q, Yao X L, Wang X R. Organometallics, 2004, 23:1684.
[24] Chen Z, Li J F, Tao W J, Sun X L, Yang X H, Tang Y. Macromolecules, 2013, 46:2870.
[25] Wan D W, Chen Z, Gao Y S, Shen Q, Sun X L, Tang Y. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:2495.
[26] Wang C, Sun X L, Guo Y H, Gao Y, Liu B, Ma Z, Xia W, Shi L P, Tang Y. Macromol. Rapid Commun., 2005, 26:1609.
[27] Wang C, Ma Z, Sun X L, Gao Y, Guo Y H, Tang Y, Shi L P. Organometallics, 2006, 25:3259.
[28] Yang X H, Liu C R, Wang C, Sun X L, Guo Y H, Wang X K, Wang Z, Xie Z, Tang Y. Angew. Chem. Int. Ed., 2009, 48:8099.
[29] Gao M L, Wang C, Sun X L, Qian C T, Ma Z, Bu S Z, Tang Y, Xie Z W. Macromol. Rapid Commun., 2007, 28:1511.
[30] Gao M L, Sun X L, Gu Y F, Yao X L, Li C F, Bai J Y, Wang C, Ma Z, Tang Y, Xie Z, Bu S Z, Qian C T. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:2807.
[31] Gao M L, Gu Y F, Wang C, Yao X L, Sun X L, Li C F, Qian C T, Liu B, Ma Z, Tang Y, Xie Z, Bu S Z, Gao Y. J. Mol. Catal. A:Chem., 2008, 292:62.
[32] Paolucci G, Zanella A, Sperni L, Bertolassi V, Mazzeo M, Pellecchia C. J. Mol. Catal. A:Chem., 2006, 258:275.
[33] Huang W, Zhang W J, Liu S F, Liang T L, Sun W H, J. Polym. Sci., Part A:Polym. Chem., 2011, 49:1887.
[34] Yan Q, Yang W H, Chen L Q. Wang L, Redshaw C, Sun W H. J. Organomet. Chem., 2014, 753:34.
[35] Owiny D, Parkin S, Ladipo F T. J. Organomet. Chem., 2003, 678:134.
[36] Cariou R, Gibson V C, Tomov A K, White A J P. J. Organomet. Chem., 2009, 694:703.
[37] Wang Y H, Zhang W J, Huang W, Wang L, Redshaw C, Sun W H. Polymer, 2011, 52:3732.
[38] Wan L, Zhang D, Wang Q R, Chen Z X, Weng L H. J. Organomet. Chem., 2013, 724:155.
[39] Suzuki Y, Kinoshita S, Shibahara A, Ishii S, Kawamura K, Inoue Y, Fujita T. Organometallics, 2010, 29:2394.
[40] Audouin H, Bellini R, Magna L, Mézailles N, Olivier-Bourbigou H. Eur. J. Inorg. Chem., 2015, 2015:5272.
[41] Chuchuryukin A V, Huang R B, Lutz M, Chadwick J C, Spek A L, van Koten G. Organometallics, 2011, 30:2819.
[42] Chuchuryukin A V, Huang R B, van Faassen E E, van Klink G P M, Lutz M, Chadwick J C, Spek A L, van Koten G. Dalton Trans., 2011, 40:8887.
[43] Li W, Su F, Yuan S F, Duan X E, Bai S D, Liu D S. RSC Adv., 2016, 6:40741.
[44] Jia A Q, Wang J Q, Hu P, Jin G X. Dalton Trans., 2011, 40:7730.
[45] Lee C S, Park J H, Wang E Y, Park G H, Go M J, Lee J, Lee B Y. J. Organomet. Chem., 2014, 772/773:172.
[46] Chan M C W, Tam K H, Pui Y L, Zhu N Y. J. Chem. Soc., Dalton Trans., 2002, 16(16):3085.
[47] Chan M C W, Kai S C F, Cole J M, McIntyre G J, Matsui S, Zhu N Y, Tam K H. Chem.-Eur. J., 2006, 12:2607.
[48] Kirillov E, Roisnel T, Razavi A, Carpentier J F. Organometallics, 2009, 28:5036.
[49] Mack H, Eisen M S. J. Chem. Soc., Dalton Trans., 1998, 37(6):917.
[50] Aihara H, Matsuo T, Kawaguchi H. Chem. Commun., 2003, 9(17):2204.
[51] Hanaoka H, Imamoto Y, Hino T, Oda Y. J. Organomet. Chem., 2006, 691:4968.
[52] Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z. Inorg. Chem. Commun., 2000, 3:611.
[53] Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z. Chem.Commun., 2001, 2120.
[54] Groysman S, Goldberg I, Kol M, Genizi E, Goldschmidt Z. Inorg. Chim. Acta, 2003, 345:137.
[55] Groysman S, Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z, Shuster M. Organometallics, 2004, 23:5291.
[56] Segal S, Goldberg I, Kol M. Organometallics, 2005, 24:200.
[57] Cohen A, Kopilov J, Lamberti M, Venditto V, Kol M. Macromolecules, 2010, 43:1689.
[58] Obuah C, Omondi B, Nozaki K, Darkwa J. J. Mol. Catal. A:Chem., 2014, 382:31.
[59] Press K, Cohen A, Goldberg I, Venditto V, Mazzeo M, Kol M. Angew. Chem., Int. Ed., 2011, 50:3529.
[60] Wang W, Fujiki M, Nomura K. Macromol. Rapid Commun.,2004, 25:504.
[1] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[2] Shuzhang Qu, Taoyi Zhang, Wei Wang. Olefin Polymerization with Nitrogen-Coordinated Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2019, 31(7): 929-938.
[3] Yuan Shifang, Niu Chunxia, Wei Xuehong, Sun Wenhua. ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization [J]. Progress in Chemistry, 2016, 28(7): 1070-1075.
[4] Wang Kui, Lei Jinhua*, Nie Heran, Zhou Guangyuan*. Olefin Polymerization in Confined Space [J]. Progress in Chemistry, 2015, 27(12): 1764-1773.
[5] Liu Ning, Wang Xuzhen*, Xu Wenya, Guo Decai, Tang Jizhou, Zhang Baolu. Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts [J]. Progress in Chemistry, 2013, 25(05): 726-734.
[6] . Olefin Polymerization with Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2009, 21(04): 677-686.
[7]

Yu Nan1,2 Hou Zhaomin2** Xi Zhenfeng1**

. Cationic Complexes of Rare Earth Metals [J]. Progress in Chemistry, 2008, 20(10): 1515-1524.
[8] Chen Liyi,Yang Haijian,Sun Wenhua**. Advances of Olefin Polymerization in Aqueous Solutions [J]. Progress in Chemistry, 2003, 15(05): 401-.
[9] Shen Haoyu,Jin Guoxin**. New Type Late Transition Metal Catalysts for Olefin Polymerization ——Nickel-based Olefin Polymerization Catalysts [J]. Progress in Chemistry, 2003, 15(01): 60-.
[10] Wang Mei,Qian Mingxing,He Ren. Catalysis of Multi-Nitrogen Chelated Late-Transition-Metal Complexes for Olefin Polymerization [J]. Progress in Chemistry, 2001, 13(02): 102-.
[11] Zhang Puyu,Wang Li,Feng Linxian. Progress in the Metallocene Borane Catalytic System for Olefin Polymerization [J]. Progress in Chemistry, 2001, 13(02): 108-.
[12] Zhang Zhaorong,Suo Jishuan,Zhang Xiaoming,Li Shuben*. New Vistas for Silica-Based Mesoporous Molecular Sieves [J]. Progress in Chemistry, 1999, 11(01): 11-.