中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 272-285 DOI: 10.7536/PC170740 Previous Articles   Next Articles

• Review •

Nano/Micro Structured Silicon-Based Negative Materials

Shuaijin Wu1,2, Juanyu Yang1,2*, Bing Yu1,2, Sheng Fang1,2, Zhaohui Wu1,2, Bimeng Shi1,2   

  1. 1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R&D Program of China(No.2016YFB0100400) and the National Natural Science Foundation of China(No.51504032, 51604032, U1664256).
PDF ( 2177 ) Cited
Export

EndNote

Ris

BibTeX

Due to high theoretical specific capacity(4200 mAh/g), silicon is considered as one of the most promising materials for lithium-ion battery negative electrodes. Nano-silicon negative materials can effectively avoid the pulverization of the particles during cycling and have shorter Li+ and electron transport paths. The electrochemical performance of the corresponding electrodes is significantly improved compared to that of the micro-sized silicon based electrodes. However, the specific surface area of nano-materials is too large while the tap density is low, that limits the application of nano-silicon negative materials in practical production. In recent years, the strategy of using nano-structured silicon materials as building units to construct nano/micro structured silicon-based negative materials has been widely studied. The development of nano/micro structured silicon-based materials for lithium-ion batteries is reviewed. The selection and structural design elements of nano-sized primary particles as well as micro-sized secondary particles are summarized. The physical and electrochemical properties of representative nano/micro structured silicon-based materials are also introduced. Moreover, an optimized design of the nano/micro structured silicon-based material structure and electrode structure is proposed. Finally, challenges and problems existing in nano/micro structured silicon-based negative materials are briefly analyzed and prospects of them as negative materials for lithium-ion batteries are discussed.
Contents
1 Introduction
2 Structure of primary particles in nano/micro structured silicon-based negative materials
2.1 Primary particles of nano-silicon
2.2 Void space in primary particles
3 Design elements of secondary particles in nano/micro structured silicon-based negative materials
3.1 Void space in secondary particles
3.2 Surface coating of secondary particles
3.3 Size optimization of secondary particles
4 Conclusion and outlook

CLC Number: 

[1] Huggins R A, Boukamp B A. Journal of the Electrochemical Society, 1981, 128(4):725.
[2] Winter M, Besenhard J O, Spahr M E, Novak P. Advanced Materials, 1998, 10(10):725.
[3] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Hu L B, Cui Y. Nature Nanotechnology, 2012, 7(5):310.
[4] Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y. ACS Nano, 2012, 6(2):1522.
[5] Ji H, Kim J W, Sung Y E, Oh S M. Electrochemical and Solid-State Letters, 2004, 7(10):A306.
[6] Oh S W, Myung S T, Bang H J, Chong S Y, Amine K, Sun Y K. Electrochemical and Solid-State Letters, 2009, 12(9):A181.
[7] Nam K T, Kim D W, Yoo P J, Chiang C Y, Meethong N,Hammond P T, Chiang Y M, Belcher A M. Science, 2006,312(5775):885.
[8] Xue D J, Xin S, Yan Y, Jiang K C, Yin Y X, Guo Y G, Wan L J. Journal of the American Chemical Society, 2012, 134(5):2512.
[9] Seng K H, Park M H, Guo Z P, Liu H K, Cho J. Angewandte Chemie, 2012, 124(23):5755.
[10] Su L W, Jing Y, Zhou Z. Nanoscale, 2011, 3(10):3967.
[11] Lin D C, Lu Z D, Hsu P C, Lee H R, Liu N, Zhao J, Wang H T, Liu C, Cui Y. Energy & Environmental Science, 2015, 8(8):2371.
[12] Wang Y G, Li H Q, He P, Hosono E, Zhou H S. Nanoscale, 2010, 2(8):1294.
[13] Guo Y G, Hu Y S, Maier J. Chemical Communications, 2006, 26(26):2783.
[14] Guo Y G, Hu Y S, Sigle W, Maier J. Advanced Materials, 2007, 19(16):2087.
[15] Guo Y G, Hu J S, Wan L J. Advanced Materials, 2008, 20:2878.
[16] Liou S H, Tsou T C, Wang S L, Li L A, Chiang H C, Li W F, Lin P P, Lai C H, Lee H L, Lin M H, Hsu J H, Chen C R, Shih T S, Liao H Y, Chung Y T. Journal of Nanoparticle Research, 2012, 14(8):544,
[17] Dobashi R. Journal of Physics Conference Series, 2009, 170:012029.
[18] Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z. Journal of Materials Chemistry, 2004, 14(11):1754.
[19] Yang S B, Song H H, Chen X H. Electrochimica Acta, 2006, 8(1):137.
[20] Bao Z H, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B, Church B C, Kang Z T, Abernathy H W, Summers C J, Liu M L, Sandhage K H. Nature, 2007, 446(7132):172.
[21] Bang B M, Kim H, Song H K, Cho J, Park S. Energy and Environmental Science, 2011, 4(12):5013.
[22] Bang B M, Lee J I, Kim H, Cho J, Park S. Advanced Energy Materials, 2012, 2(7):878.
[23] Zhu X, Chen H, Wang Y, Xia L, Tan Q, Li H, Zhong Z, Su F, Zhao X S. Journal of Materials Chemistry C, 2013, 1(14):4483.
[24] Yin Y X, Xin S, Wan L J, Li C J, Guo Y G. Journal of Materials Chemistry C, 2011, 115(29):14148.
[25] Shin K, Park D J, Lim H S, Sun Y K, Suh K D. Electrochimica Acta, 2011, 58(1):578.
[26] Lee J H, Kim W J, Kim J Y, Lim S H, Lee S M. Journal of Power Sources, 2008, 176(1):353.
[27] Lee J I, Choi N S, Park S. Energy & Environmental Science, 2012, 5(7):7878.
[28] Hu Y S, Demircakan R, Titirici M M, Müller J O, Schlögl R, Antonietti M, Maiera J. Angewandte Chemie International Edition, 2008, 47(9):1645.
[29] Ren W F, Zhang Z L, Wang Y H, Tan Q Q, Zhong Z Y, Su F B. Journal of Materials Chemistry A, 2015, 3(11):5859.
[30] Jung S C, Choi J W, Han Y K. Nano Letters, 2012, 12(10):5342.
[31] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C M, Nix W D, Cui Y. Nano Letters, 2013, 13(2):758.
[32] Wang J W, He Y, Fan F F, Liu X H, Xia S M, Liu Y, Harris T, Li H, Huang J Y, Mao S X, Zhu T. Nano Letters, 2013, 13(2):709.
[33] Kim H, Seo M, Park M H, Cho J. Angewandte Chemie, 2010, 49(12):2146.
[34] Li H. Electrochemical and Solid-State Letters, 1999, 2(11):547.
[35] Mazouzi D, Lestriez B, Roue De' L, Guyomard D. Electrochemical and Solid-State Letters, 2009, 12(11):A215.
[36] Yang J, Winter M, Besenhard J O. Solid State Ionics, 1996, 90(1/4):281.
[37] Kasavajjula U, Wang C S, Appleby A J. Journal of Power Sources, 2007, 163(2):1003.
[38] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Letters, 2009, 9(11):3844.
[39] Peng K, Jie J, Zhang W, Lee S T. Applied Physics Letters, 2008, 93(3):033105.
[40] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nature Nanotechnology, 2008, 3(1):31.
[41] Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y. Journal of Power Sources, 2009, 189(1):34.
[42] Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Letters, 2009, 9(1):491.
[43] Song T, Xia J L, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y G, Hwang K C, Rogers J A, Paik U. Nano Letters, 2010, 10(5):1710.
[44] Li J C, Dozier A K, Li Y C, Yang F Q, Cheng Y T. Journal of the Electrochemical Society, 2011, 158(6):A689.
[45] Ohara S, Suzuki J, Sekine K, Takamura T. Journal of Power Sources, 2004, 136(2):303.
[46] Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K. Journal of Power Sources, 2004, 129(1):96.
[47] Yi R, Dai F, Gordin M L, Chen S R, Wang D H. Advanced Energy Materials, 2013, 3(3):295.
[48] Yi R, Dai F, Gordin M L, Sohn H, Wang D H. Advanced Energy Materials, 2013, 3(11):1507.
[49] Gauthier M, Mazouzi D, Reyter D, Lestriez B, Moreau P, Guyomard D, Rou De' L. Energy & Environmental Science, 2013, 6(7):2145.
[50] Chen X X, Li X L, Ding F, Xu W, Xiao J, Cao Y L, Meduri P, Liu J, Graff G L, Zhang J G. Nano Letters, 2012, 12(8):4124.
[51] Dai F, Yi R, Gordin M, Chen S R, Wang D H. RSC Advances, 2012, 2(33):12710.
[52] Liu N, Lu Z D, Zhao J, McDowell M T, Lee H W, Zhao W T, Cui Y. Nature Nanotechnology, 2014, 9(3):187.
[53] Sohn H, Dong H K, Yi R, Tang D, Li S E, Jung Y S, Wang D H. Journal of Power Sources, 2016, 334:128.
[54] Kim S Y, Lee J, Kim B H, Kim Y J, Yang K S, Park M S. ACS Applied Materials & Interfaces, 2016, 8(19):12109.
[55] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y. Nano Letters, 2011, 11(7):2949.
[56] Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M. Nature Communications, 2015, 6:8844.
[57] Chen D Y, Mei X, Ji G, Lu M H, Xie J P, Lu J M, Lee J Y. Angewandte Chemie International Edition, 2012, 51(10):2409.
[58] Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Letters, 2012, 12(6):3315.
[59] Li X L, Meduri P, Chen X X, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J. Journal of Materials Chemistry, 2012, 22(22):11014.
[60] Pan L, Wang H B, Gao D C, Chen S Y, Tan L, Li L. Chemical Communications, 2014, 50(44):5878.
[61] Tao H C, Fan L Z, Song W L, Wu M, He X B, Qu X H. Nanoscale, 2014, 6(6):3138.
[62] Zhou X Y, Tang J J, Yang J, Xie J, Ma L L. Electrochimica Acta, 2013, 87(1):663.
[63] Feng X J, Cui H M, Miao R R, Yan N F, Ding T D, Xiao Z Q. Ceramics International, 2015, 42(1):589.
[64] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9(4):353.
[65] Jung D S, Hwang T H, Park S B, Choi J W. Nano Letters, 2013, 13(5):2092.
[66] Yoo J K, Kim J, Choi M J, Park Y U, Hong J, Baek K M, Kang K, Jung Y S. Advanced Energy Materials, 2014, 4(16):1400622.
[67] Feng X J, Yang J, Bie Y T, Wang J L, Nuli Y, Lu W. Nanoscale, 2014, 6(21):12532.
[68] Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y, Cho J. Nature Energy, 2016, 1(9):16113.
[69] Yoshio M, Wang H Y, Fukuda K, Umeno T, Dimov N, Ogumi Z. Journal of the Electrochemical Society, 2002, 149(12):A1598.
[70] Dimov N, Fukuda K, Umeno T, Kugino S, Yoshino M. Journal of Power Sources, 2003, 114(1):88.
[71] Wu X D, Wang Z X, Chen L Q, Huang X J. Electrochemistry Communications, 2003, 5(11):935.
[72] Kwon E, Lim H S, Sun Y K, Suh K D. Solid State Ionics, 2013, 237(16):28.
[73] Chen H X, Xiao Y, Wang L, Yang Y. Journal of Power Sources, 2011, 196(16):6657.
[74] Park S E, Kim B E, Lee S W, Lee J K. 中国有色金属学报(Transactions of Nonferrous Metals Society of China), 2009, 19(4):1023.
[75] Jeong G, Kim J G, Park M S, Seo M, Hwang S M, Kim Y U, Kim Y J, Kim J H, Dou S X. ACS Nano, 2014, 8(3):2977.
[76] Fang S, Shen L F, Xu G Y, Nie P, Wang J, Dou H, Zhang X G. ACS Applied Materials & Interfaces, 2014, 6(9):6497.
[77] Nguyen H T, Zamfir M R, Duong L D, Lee Y H, Bondavalli P, Pribat D. Journal of Materials Chemistry, 2012, 22(47):24618.
[78] Shao D, Tang D P, Mai Y J, Zhang L Z. Journal of Materials Chemistry A, 2013, 1(47):15068.
[79] Wang D S, Gao M X, Pan H G, Wang J H, Liu Y F. Journal of Power Sources, 2014, 256(12):190.
[80] Yen Y C, Chao S C, Wu H C, Wu N L. Journal of the Electrochemical Society, 2009, 156(2):A95.
[81] Xu Y H, Yin G P, Ma Y L, Zuo P J, Cheng X Q. Journal of Materials Chemistry, 2010, 20(16):3216.
[82] Chen S R, Gordin M L, Yi R, Howlett G, Sohn H, Wang D H. Physical Chemistry Chemical Physics, 2012, 14(37):12741.
[83] Park Y W, Choi N S, Park S J, Woo S H, Sim S J, Jang B Y, Oh S M, Park S J, Cho J P, Lee K T. Advanced Energy Materials, 2013, 3(2):206.
[84] Kim J W, Ji H R, Lee K T, Oh S M.Journal of Power Sources, 2005, 147(1/2):227.
[85] Liu Y, Hudak N S, Huber D L, Limmer S J, Sullivan J P, Huang J Y. Nano Lett, 2011, 11:4188
[86] Guo Z P, Wang J Z, Liu H K, Dou S X. Journal of Power Sources, 2005, 146(1):448.
[87] Lu Z D, Liu N, Lee H W, Zhao J, Li W Y, Li Y Z, Cui Y. ACS Nano, 2015, 9(3):2540.
[88] Li S, Qin X Y, Zhang H R, Wu J X, He Y B, Li B H, Kang F Y. Electrochemistry Communications, 2014, 49(49):98.
[89] Song J X, Chen S R, Zhou M J, Xu T, Lv D P, Gordin M L, Long T J, Melnyk M, Wang D H. Journal of Materials Chemistry A, 2013, 2(5):1257.
[90] Xu Z L, Gang Y, Garakani M A, Abouali S, Huang J Q, Kim J K. Journal of Materials Chemistry A, 2016, 4(16):6098.
[91] Wu H, Zheng G Y, Liu N, Carney T J, Yang Y, Cui Y. Nano Letters, 2012, 12(2):904.
[92] Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y. Nature Energy, 2016, 1(2):15029.
[93] Luo F, Liu B N, Zheng J Y, Chu G, Zhong K F, Li H, Huang X J, Chen L Q. Journal of the Electrochemical Society, 2015, 162(14):A2509.
[94] Vijayaraghavan B, Ely D R, Chiang Y M, Garc'la-Garc'la R, Garc'la R E. Journal of the Electrochemical Society, 2012, 159(5):A548.
[95] Srinivasan V, Newman J. Journal of the Electrochemical Society, 2004, 151(10):A1517.
[96] Darling R, Newman J. Journal of the Electrochemical Society, 1997, 144(12):4201.
[97] Farkhondeh M, Delacourt C. Journal of the Electrochemical Society, 2012, 159(2):177.
[98] Doyle M, Fuller T F, Newman J S. Journal of the Electrochemical Society, 1993, 140(6):1526.
[99] Farkhondeh M, Safari M, Pritzker M, Fowler M, Han T, Wang J, Delacourt C. Journal of the Electrochemical Society, 2014, 161(3):A201.
[100] Zavalis T G, Klett M, Kjell M H, Behm M, Lindström R W, Lindbergh G. Electrochimica Acta, 2013, 110(6):335.
[101] Rinaldo S G, Urchaga P, Hu J, Lee W, Stumper J, Rice C, Eikerling M. Physical Chemistry Chemical Physics, 2014, 16(48):26876.
[102] Röder F, Sonntag S, Schröder D, Krewer U. Energy Technology, 2016, 4:1588.
[103] Chung D W, Shearing P R, Brandon N P, Harris S J, Garcia R E. Journal of the Electrochemical Society, 2014, 161(3):A422.
[104] Smith M, Garci Di' A R E, Horn Q C. Journal of the Electrochemical Society, 2009, 156(11):A896.
[105] Kim S O, Manthiram A. Journal of Materials Chemistry A, 2014, 3(5):2399.
[106] Cho I, Choi J, Kim K, Ryou M H, Yong M L. RSC Advances, 2015, 5(115):95073.
[107] Zhang L, Wang Y H, Kan G W, Zhang Z L, Wang C G, Zhong Z Y, Su F B. RSC Advances, 2014, 4(81):43114.
[108] Wang H, Xie J, Zhang S C, Cao G S, Zhao X B. RSC Advances, 2016, 6(74):69882.
[109] Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G. Advanced Energy Materials, 2016,7(3):1601481.
[110] Zheng T, Liu Y H, Fuller E W, Tseng S, Sacken U V, Dahn J R. Journal of the Electrochemical Society, 1995, 142(8):2581.
[111] De Volder M F, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119):535.
[112] Gogotsi Y, Simon P. Science, 2011, 334(6058):917.
[113] Li X L, Gu M, Hu S Y, Kennard R, Yan P F, Chen X L, Wang C M, Sailor M J, Zhang J G, Liu J. Nature Communications, 2014, 5(5):4105.
[114] Hu L B, Wu H, Hong S S, Cui L F, McDonough J R, Bohy S, Cui Y. Chemical Communications, 2011, 47(1):367.
[115] Ji J Y, Ji H X, Zhang L L, Zhao X, Bai X, Fan X B, Zhang F, Ruoff R S. Advanced Materials, 2013, 25(33):4673.
[116] Gowda S R, Pushparaj V, Herle S, Girishkumer G, Gordon J G, Gullapalli H. Nano Letters, 2012, 12(12):6060.
[117] 武兆辉(Wu Z H), 杨娟玉(Yang J Y), 闫坤(Yan K), 于冰(Yu B), 方升(Fang S), 史碧梦(Shi B M). 稀有金属(Rare Materials), 2016, 40(8):838.
[118] Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Nature Chemistry, 2013, 5(12):1042.
[119] Chen Z, Wang C, Lopez J, Lu Z D, Cui Y, Bao Z N. Advanced Energy Materials, 2015, 5(8):1401826.
[120] Kwon T W, You K J, Lee I, Kim T S, Choi J W, Coskun A. Advanced Materials, 2014, 26(47):7979.
[1] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[2] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[3] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[4] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[5] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[6] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[7] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[8] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[9] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
[10] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[11] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[12] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[13] Chen Xu, He Daping, Mu Shichun. Nitrogen-Doped Graphene [J]. Progress in Chemistry, 2013, 25(08): 1292-1301.
[14] Liu Xin, Zhao Hailei, Xie Jingying, Tang Weiping, Pan Yanlin, Lü Pengpeng. Polymer Binders for High Capacity Electrode of Lithium-Ion Battery [J]. Progress in Chemistry, 2013, 25(08): 1401-1410.
[15] Yin Chengguo, Ma Yulin*, Cheng Xinqun, Yin Geping. Elevated-Temperature Electrolytes for Li-Ion Batteries [J]. Progress in Chemistry, 2013, 25(01): 54-59.