中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1499-1508 DOI: 10.7536/PC170727 Previous Articles   Next Articles

• Review •

Preparation and Applications of PoPD Micro/Nano Related Structures

Kunpeng Jiang, Xiaojun Han*   

  1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21773050,21528501), the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (No. 2017DX05), and the HIT Environment and Ecology Innovation Special Funds(No. HSCJ201607)
PDF ( 1333 ) Cited
Export

EndNote

Ris

BibTeX

Ortho-phenylendiamine (oPD), with two adjacent -NH2 groups in the benzene ring, is one of typical aniline derivatives. PoPD has huge advantages in the respects of post processing and modification because PoPD owns more active sites than poly-aniline. As an important conductive polymer, PoPD has attracted increasing attention due to its special conductive mechanism and important role in chemical production. Herein, the progress in preparation and applications of PoPD micro/nano related materials are summarized. The progress in the preparation of PoPD micro/nano structures by using chemical oxidation method, reprecipitation method and microfluidic methods are focused. In combination with our research results, this paper summarizes the mechanism of polymerization, the process of oxidation-reduction and the mechanism of self-assembly of PoPD materials. Their applications in the field of sensors, bio-imaging and supercapacitors are also summarized. The current issues and the future trends of the preparation of PoPD micro/nano related materials are also analyzed which will provide useful references for the new research of PoPD micro/nano related materials.
Contents
1 Introduction
2 Preparation of PoPD micro/nano materials
2.1 Chemical oxidation method
2.2 Reprecipitation method
2.3 Microfluidic method
2.4 Other methods
3 Applications of PoPD materials
3.1 Applications of PoPD materials in sensors
3.2 Applications of PoPD materials in biological imaging
3.3 Applications of PoPD materials in supercapacitors
4 Outlook

CLC Number: 

[1] Pisarevskaya E Y, Ehrenburg M R, Ovsyannikova E V, Efimov O N, Andreev V N. Russ. J. Electrochem., 2017, 53:70.
[2] Avnir D, Braun S, Lev O, Ottolenghi M. Chem. Mater.,1994, 6:1605.
[3] Malitesta C, Palmisano F, Torsi L, Zambonin P G. Anal. Chem.,1990, 62:2735.
[4] Mazeikiene R, Malinauskas A.Synth. Met.,2002, 128:121.
[5] Yano J, Shimoyama A, Ogura K. J. Chem. Soc., Faraday Trans., 1992, 88:2523.
[6] Li Y, Li T T, Yao M, Liu S Q. J. Mater. Chem.,2012, 22:10911.
[7] Ekinci E, Erdogdu G, Karagözler A E. J. Appl. Polym. Sci.,2001, 79:327.
[8] Palmisano F, Centonze D, Zambonin P. Biosens. Bioelectron.,1994, 9:471.
[9] Wu G Z, Asai S, Sumita M, Yui H. Macromolecules, 2002, 35:945.
[10] Hadorn M, Boenzli E, Hanczyc M M. Langmuir, 2016, 32:3561.
[11] Whitesides G M, Grzybowski B. Science, 2002, 295:2418.
[12] Fujita D, Ueda Y, Sato S, Mizuno N, Kumasaka T, Fujita M. Nature, 2016, 540:563.
[13] Kim S O, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Nature, 2003, 424:411.
[14] 黄美荣(Huang M R),马小立(Ma X L),李新贵(Li G X).功能材料(Journal of Function Materials), 2008, 39(1):9.
[15] Tian J Q, Li H L, Luo Y L, Wang L, Zhang Y W, Sun X P. Langmuir, 2011, 27:874.
[16] Lu X, Tuan H Y, Chen J, Li Z Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2007, 129:1733.
[17] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105:4065.
[18] Millstone J E, Hurst S J, Métraux G S. Cutler J I, Mirkin C A. Small, 2009, 5:646.
[19] Sun X P, Dong S J, Wang E K. Angew. Chem. Int. Ed., 2004, 43:6360.
[20] Sun X P, Dong S J, Wang E K. Chem. Commun., 2004, 1182.
[21] Han J, Liu Y, Li L Y, Guo R. Langmuir, 2009, 25:11054.
[22] He D P, Wu Y, Xu B Q. Eur. Polym. J.,2007, 43:3703.
[23] Lu X F, Mao H, Chao D M, Zhao X G, Zhang W J, Wei Y. Mater. Lett., 2007, 61:1400.
[24] Guo S J, Dong S J, Wang E K. Chem. Mater., 2007, 19:4621.
[25] Sun X P, Hagner M. Langmuir, 2007, 23:10441.
[26] Wang Z F, Liao F, Yang S W, Guo T T. Fibers and Polymers, 2011, 12:997.
[27] Zhang L Y, Chai L Y, Wang H Y, Yang Z H. Mater. Lett., 2010, 64:1193.
[28] Li T X, Yuan C Q, Zhao Y H, Chen Q L, Wei M, Wang Y M. J. Macromol. Sci. Pure Appl. Chem., 2013, 50:330.
[29] Chai L Y, Zhang L Y, Wang H Y, Yu W T, Sang P L. Mater. Lett., 2010, 64:2302.
[30] Tian J Q, Liu S, Sun X P. Langmuir, 2010, 26:15112.
[31] Jiang K P, Ma S H, Bi H M, Chen D F, Han X J. J. Mater. Chem. A, 2014, 2:19208.
[32] Jiang K P, Ma S H, Zhang Y, Han X J. RSC Adv., 2016, 6:21895.
[33] Jiang K P, Ma S H, Wang Y N, Zhang Y, Han X J. Appl. Surf. Sci., 2017, 403:677.
[34] Gong X C, Milic T, Xu C, Batteas J D, Drain C M. J. Am. Chem. Soc., 2002, 124:14290.
[35] Tan C, Pinto M R, Kose M E, Ghiviriga I, Schanze K S. Adv. Mater., 2004, 16:1208.
[36] Zang L, Che Y K, Moore J S. Acc. Chem. Res., 2008, 41:1596.
[37] Chen S, Slattum P, Wang C Y, Zang L. Chem. Rev., 2015, 115:11967.
[38] Jiang H Q, Sun X P, Huang M H, Wang Y L, Li D, Dong S J. Langmuir, 2006, 22:3358.
[39] Whitesides G M. Nature, 2006, 442:368.
[40] Hansen A S, Hao N, O'shea E K. Nature Protocols, 2015, 10:1181.
[41] Au A K, Lee W, Folch A. Lab on a Chip, 2014, 14:1294.
[42] Majedi F S, Hasani-Sadrabadi M M, Emami S H, Shokrgozar M A, VanDersarl J J, Dashtimoghadam E, Bertsch A, Renaud P. Lab on a Chip, 2013, 13:204.
[43] Bai S, Debnath S, Gibson K, Schlicht B, Bayne L, Zagnoni M, Ulijn R V. Small, 2014, 10:285.
[44] Hamon C, Henriksen-Lacey M, La Porta A, Rosique M, Langer J, Scarabelli L, Montes A B S, González-Rubio G,de Pancorbo M M. Liz-Marzán L M. Adv. Funct. Mater., 2016, 26:8053.
[45] Wang L, Ma S H, Yang B, Cao W W, Han X J. Chem. Eng. J., 2015, 268:102.
[46] Ratha S, Rout C S. ACS Appl. Mat. Inter., 2013, 5:11427.
[47] Li Y X, Hu Y F, Peng S Q, Lu G X, Li S B. J. Phys. Chem. C, 2009, 113:9352.
[48] Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M. Angew. Chem. Int. Ed., 2006, 45:2378.
[49] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[50] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11:1620.
[51] Liao F, Yang S W, Li X B, Yan S, Hu C S, He L,Kang X Y, Song X, Ren T Y. Synth. Met., 2014, 190:79.
[52] 汪莲艳(Wang L Y), 陆枫(Lu F), 吴福全(Wu F Q), 顾仁敖(Gu R A), 姚建林(Yao J L), 张海禄(Zhang H L), 邓宗武(Deng Z W).物理化学学报(Acta Physico-Chimca Sinca), 2011, 27(6):1451.
[53] 郭婷婷(Guo T T), 廖钫(Liao F), 汪周峰(Wang Z F), 杨思维(Yang S W).化学研究与应用(Chemical Research & Application), 2012, 24(2):260.
[54] 刘有芹(Liu Y Q), 颜芸(Yan Y), 陈明洁(Chen M J), 徐莉(Xu L), 徐悦华(Xu Y H). 化学研究与应用(Chemical Research & Application), 2008, 20(11):1430.
[55] Kappe C O. Angew. Chem. Int. Ed., 2004, 43:6250.
[56] Kappe C O. Chem. Soc. Rev., 2008, 37:1127.
[57] Leadbeater N E, Marco M. Org. Lett., 2002, 4:2973.
[58] Song L, Cui Y Y, Zhang C F, Hu Z B, Liu X F. RSC Adv., 2016, 6:17704.
[59] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437:121.
[60] Hao Q L, Sun B M, Yang X J, Lu L, Wang X. Mater. Lett., 2009, 63:334.
[61] 阿孜古丽·木尔赛力木(Aziguli M), 如仙古丽·加马力(Ruxianguli J), 吐尔逊·阿不都热依木(Tuerxun A), 司马义·努尔拉(Simayi N), 吾买尔江·吐尔逊(Wumaierjiang T). 化学研究与应用(Chemical Research & Application), 2007, 19(4):409.
[62] 吐尔逊·阿布都热依木(Tuerxun A), 张校刚(Zhang X G). 高分子材料科学与工程(Polymer Materials and Engineering), 2005, 21(5):110.
[63] Zhang Y W, Sun X P. Chem. Commun., 2011, 47:3927.
[64] Geraghty D P, Mazzone S B, Carter C, Kunde D A. Catal. Sci & Technol., 2011, 1:1393.
[65] Tian J Q, Li H L, Lu W B, Luo Y L, Wang L, Sun X P. Analyst, 2011, 136:1806.
[66] Zhang Y W, Wang L, Tian J Q, Li H L, Luo Y L, Sun X P. Langmuir, 2011, 27:2170.
[67] Sun X P, Dong S J, Wang E K. Macromol. Rapid Commun., 2005, 26:1504.
[68] Sun J, Wang B, Zhao X, Li Z J, Yang X R. Anal. Chem., 2016, 88:1355.
[69] Liao F, Song X, Yang S W, Hu C Y, He L, Yan S, Ding G Q. J. Mater. Chem. A, 2015, 3:7568.
[70] Chang Y Y, Xie S B, Chai Y Q, Yuan Y L, Yuan R. Chem. Commun., 2015, 51:7657.
[71] Fang B Y, Liang Y, Chen F. Talanta, 2014, 119:601.
[72] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128:7756.
[73] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953.
[74] Ge J C, Jia Q Y, Liu W M, Guo L, Liu Q Y, Lan M H, Zhang H Y, Meng X M, Wang P F. Adv. Mater., 2015, 27:4169.
[75] Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54:5360.
[76] Yuan C Q, Liu X H, Jia M Y, Luo Z X, Yao J N. J. Mater. Chem. A, 2015, 3:3409.
[77] Zhu H, Wang X L,Liu X X, Yang X R. Adv. Mater., 2012, 24:6524.
[78] Wang M R, Zhang H H, Wang C Y, Hu X Y, Wang G X. Electrochim. Acta, 2013, 91:144.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[8] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[9] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[10] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[11] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[12] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[13] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[14] Yue Ding, Bo Lu, Junhui Ji. Compatibilization Strategies of PLA-Based Biodegradable Materials [J]. Progress in Chemistry, 2020, 32(6): 738-751.
[15] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.