中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1173-1183 DOI: 10.7536/PC170620 Previous Articles   Next Articles

• Review •

Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode

Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*   

  1. Department of Chemistry, Capital Normal University, Beijing 100048, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21575090) and the Beijing Natural Science Foundation of China (No. 2162009).
PDF ( 1902 ) Cited
Export

EndNote

Ris

BibTeX

The microelectrode is referred to the scale (at least one dimension) is not more than 25 μm, and the size is smaller than the diffusion layer thickness. Microelectrode has unique nature due to their small size. Increasing interests have been drawn in microelectrode fabrication and application since microelectrode possesses special features such as high current density, rapid response, immunity to ohmic drop, high signal to noise ratio. Microelectrode plays an important role in electrochemical technology for its unique properties, and there are many applications in the field of life analysis, such as the single cell detection and in vivo analysis. The preparation of microelectrode is the key to the application of microelectrode electrochemical development. According to the excellent performance of microelectrode, many technologies are involved in the preparation of microelectrode, such as electrochemical etching, electro-deposition method, self-assembly technology, electroless plating technology.Meanwhile, the preparation methods provide the possibility for rapid preparation of microelectrodes. According to different characteristics of the conventional electrodes, microelectrode research progress in recent years are reviewed, including the unique characteristics of microelectrode, classification and preparation methods of microelectrodes, applications in the field of life analysis, the challenge for the microelectrode and development direction.
Contents
1 Introduction
2 Unique characteristics of microelectrode
2.1 High current density
2.2 Immunity to ohmic drop
2.3 High signal to noise ratio
2.4 Fast mass transfer speed
2.5 Simple device
2.6 Drawbacks
3 Classification and preparation methods of microelectrodes
3.1 Carbon ultra-microelectrode
3.2 Carbon nanotube microelectrode
3.3 Carbon fiber microelectrode
3.4 Platinum microelectrode
3.5 Gold microelectrode
4 The in vivo/single cell applications of microelectrodes
4.1 In vivo detection
4.2 Single cell detection
5 Conclusion

CLC Number: 

[1] Bard A J, Faulkner L R. Electrochemical Methods. 2nd ed. NY:Wiley, 2001.
[2] 李竹赟(Li Z Y), 王敏(Wang M).化学进展(Progress in Chemistry), 2007, 19(10):1585.
[3] Conyers J L, White H S. Anal. Chem., 2000, 72(18):4441.
[4] Kissinger P T, Hart J B, Adams R N. Brain Res., 1973, 55(1):209.
[5] Adams R N. Anal. Chem., 1976, 48(14):1126A.
[6] Dayton M A, Brown J C, Stutts K J, Wightman R M. Anal. Chem., 1980, 52(6):946.
[7] 孙擎擎(Sun Q Q), 周文辉(Zhou W H), 赵文博(Zhao W B), 胡久刚(Hu J G), 孙睿吉(Sun R J), 朱裔荣(Zhu Y R), 陈康华(Chen K H), 陈启元(Chen Q Y). 化学教育(Chinese Journal of Chemical Education), 2015, 36(10):1.
[8] Penner R M, Heben M J, Longin T L, Lewis N S. Science, 1990, 250:1118.
[9] Santhiago M, Wydallis J B, Kubota L T, Henry C S. Anal. Chem., 2013, 85(10):5233.
[10] Hu X Q, He Q H, Lu H, Chen H W. J. Electroanal. Chem., 2010, 638(1):21.
[11] Zhang M N, Liu K, Xiang L, Lin Y Q, Su L, Mao L Q. Anal. Chem., 2007, 79(17):6559.
[12] Lin Y Q, Wang K Q, Xu Y N, Li L B, Luo J X, Wang C. Biosens. Bioelectron., 2016, 78:274.
[13] Xiao C, Liu Y L, Xu J Q, Lv S W, Guo S, Huang W H. Analyst, 2015, 140(11):3753.
[14] Li X C, Majdi S, Dunevall J, Fathali H, Ewing A G. Angew. Chem. Int. Ed., 2015, 54(41):11978.
[15] Ha Y J, Sim J G, Lee Y M, Suh M. Anal. Chem., 2016, 88(5):2563.
[16] Matysik F M. Microchim. Acta, 2008, 160(1/2):1.
[17] Nashimoto Y, Takahashi Y, Zhou Y, Ito H, Ida H, Ino K, Matsue T, Shiku H. ACS Nano, 2016, 10(7):6915.
[18] McKelvey K, Nadappuram B P, Actis P, Takahashi Y, Korchev Y E, Matsue T, Robinson C, Unwin P R. Anal. Chem., 2013, 85(15):7519.
[19] Arce M D, Bonazza H L, Fernández J L. Electrochim. Acta, 2013, 107:248.
[20] Demaille C, Brust M, Tsionsky M, Bard A J. Anal. Chem., 1997, 69(13):2323.
[21] Zhu X X, Tong J H, Bian C, Gao C Y, Xia S H. Micromachines, 2017, 8(3):86.
[22] Zhao X J, Zhang Q M, Chen H G, Liu G L, Bai W D. Electroanalysis, DOI:10.1002/elan.201700164.
[23] Hao J, Xiao T F, Wu F, Yu P, Mao L Q. Anal. Chem., 2016, 88(22):11238.
[24] Goda T, Yamada E, Katayama Y, Tabata M, Matsumoto A, Miyahara Y. Biosens. Bioelectron., 2016, 77:208.
[25] Ng S R, O'Hare D. Analyst, 2015, 140(12):4224.
[26] Shaibani P M, Etayash H, Naicker S, Kaur K, Thundat T. ACS Sensors, 2017, 2(1):151.
[27] 张祖训(Zhang Z X). 超微电极电化学(Ultramicroelectrode Electrochemistry). 北京:科学出版社(Beijing:Science Press), 1998. 6.
[28] 李启隆(Li Q L), 胡劲波(Hu J B). 电分析化学(Electroanalytical Chemistry). 北京:北京师范大学出版社(Beijing:Beijing Normal University Press), 2007. 11.
[29] 闫康(Yan K), 孟凡伟(Meng F W), 吴锋(Wu F), 科学通报(Chin. Sci. Bull.), 2014, 59:2851.
[30] 吴守国(Wu S G), 袁倬斌(Yuan Z B). 电分析化学原理(Principle of Electroanalytical Chemistry). 合肥:中国科学技术大学出版社(Hefei:China Scientific Technology Press), 2012. 3.
[31] Trojanowicz M. TrAC Trends in Analytical Chemistry, 2006, 25(5):480.
[32] Tian Y, Mao L Q, Okajima T, Ohsaka T. Biosens. Bioelectron., 2005, 21(4):557.
[33] Cox J T, Zhang B. Annual Review of Analytical Chemistry, 2012, 5:253.
[34] Hao R, Zhang B. Anal. Chem., 2015, 88(1):614.
[35] Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, Córdoba A L, Novak P, Shevchuck A I, Dougan J A, Kazarian S G, Gorelkin P V, Erofeev A S, Yaminsky I V, Unwin P R, Schuhmann W, Klenerman D, Rusakov D A, Sviderskaya E V, Korchev Y E. ACS Nano, 2014, 8(1):875.
[36] Lin Y Q, Trouillon R, Svensson M I, Keighron J D, Cans A S, Ewing A G. Anal. Chem., 2012, 84(6):2949.
[37] Putzbach W, Ronkainen N J. Sensors, 2013, 13(4):4811.
[38] Jacobs C B, Peairs M J, Venton B J. Analyt. Chim. Acta, 2010, 662(2):105.
[39] Swamy B E K, Venton B J. Analyst, 2007, 132(9):876.
[40] Xiao N, Venton B J. Anal. Chem., 2012, 84(18):7816.
[41] Xiang L, Yu P, Zhang M N, Hao J, Wang Y X, Zhu L, Dai L M, Mao L Q. Anal. Chem., 2014, 86(10):5017.
[42] Mauzeroll J, Hueske E A, Bard A J. Anal. Chem., 2003, 75(15):3880.
[43] Tsai T C, Guo C X, Han H Z, Li Y T, Huang Y Z, Li C M, Chen J J J. Analyst, 2012, 137(12):2813.
[44] Jena B K, Percival S J, Zhang B. Anal. Chem., 2010, 82(15):6737.
[45] Percival S J, Zhang B. Langmuir, 2014, 30(37):11235.
[46] Shironita S, Sakai T, Umeda M. Electrochim. Acta, 2013, 113:773.
[47] Abbou J, Demaille C, Druet M, Moiroux J. Anal. Chem., 2002, 74(24):6355.
[48] Jiang J H, Wang X Y. Electrochem. Commun., 2012, 20:157.
[49] Velmurugan J, Sun P, Mirkin M V. J. Phys. Chem. C, 2009, 113(1):459.
[50] Du Toit H, di Lorenzo M. Sens. Actuators B, 2014, 192:725.
[51] Zhang B, Heien M L A V, Santillo M F, Mellander L, Ewing A G. Anal. Chem., 2010, 83(2):571.
[52] Wang J, Trouillon R, Dunevall J, Ewing A G. Anal. Chem., 2014, 86(9):4515.
[53] Carabelli V, Gosso S, Marcantoni A, Xu Y, Colombo E, Gao Z, Vittone E, Kohn E, Pasquarelli A, Carbone E. Biosens. Bioelectron., 2010, 26(1):92.
[54] Zachek M K, Takmakov P, Park J, Wightman R M, McCarty G S. Biosens. Bioelectron., 2010, 25(5):1179.
[55] Zachek M K, Park J, Takmakov P, Wightman R M, McCarty G S. Analyst, 2010, 135(7):1556.
[56] Wang L, Xu H, Song Y, Luo J P, Wei W J, Xu S W, Cai X X. ACS Appl. Mater. Interfaces, 2015, 7(14):7619.
[57] Özel R E, Wallace K N, Andreescu S. Anal. Chim. Acta, 2011, 695:89.
[58] Liu Y Z, Yao Q Q, Zhang X M, Li M N, Zhu A W, Shi G Y. Biosens. Bioelectron., 2015, 63:262.
[59] Lourenco C F, Ledo A, Laranjinha J, Gerhardt G A, Barbosa R M. Sens. Actuators B Chem., 2016, 237:298.
[60] Hochstetler S E, Puopolo M, Gustincich S, Raviola E, Wightman R M. Anal. Chem., 2000, 72(3):489.
[61] Omiatek D M, Dong Y, Heien M L, Ewing A G. ACS Chem. Neurosci., 2010, 1(3):234.
[62] Adams K L, Jena B K, Percival S J, Zhang B. Anal. Chem., 2011, 83(3):920.
[63] Strein T G, Ewing A G. Anal. Chem., 1992, 64(13):1368.
[64] Strand A M, Venton B J. Anal. Chem., 2008, 80(10):3708.
[65] Li X Y, Liu X H, Wang W W, Li L, Lu X Q. Biosens. Bioelectron., 2014, 59:221.
[66] Liu Y, Sun G Z, Jiang C B, Zheng X T, Zheng L X. Microchim. Acta, 2014, 181(1/2):63.
[67] Chen Y, Li Q, Jiang H, Wang X M. J. Electroanal. Chem., 2016, 781:233.
[68] Yao D C, Vlessidis A G, Evmiridis N P. Microchim. Acta, 2004, 147(1/2):1.
[69] Griveau S, Bedioui F. Anal. Bioanal. Chem., 2013, 405(11):3475.
[70] Trouillon R. Biol. Chem., 2012, 394(1):17.
[71] Zhang X J. Front. Biosci. Landmrk., 2004, 9:3434.
[72] Xu T, Scafa N, Xu L P, Su L, Li C Z, Zhou S F, Liu Y, Zhang X J. Electroanal., 2014, 26(3):449.
[73] Privett B J, Shin J H, Schoenfisch M H. Chem. Soc. Rev., 2010, 39(6):1925.
[74] Daniel M C, Astruc D. Chem. Rev., 2004, 104(1):293.
[75] Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Plasmonics, 2007, 2(3):107.
[76] Rothrock A R, Donkers R L, Schoenfisch M H. J. Am. Chem. Soc., 2005, 127(26):9362.
[77] Polizzi M A, Stasko N A, Schoenfisch M H. Langmuir, 2007, 23(9):4938.
[78] Caruso E B, Petralia S, Conoci S, Giuffrida S, Sortino S. J. Am. Chem. Soc., 2007, 129(3):480.
[79] Dang X P, Hu C G, Wang Y K, Hu S S. Sens. Actuators B, 2011, 160:260.
[80] Feeny R M, Wydallis J B, Chen T, Tobet S, Reynolds M M, Henry C S. Electroanalysis, 2015, 27(5):1104.
[81] Elliott J, Duay J, Simoska O, Shear J B, Stevenson K J. Anal. Chem., 2017.
[82] Murray R W. Chem. Rev., 2008, 108(7):2688.
[83] Zhang A Q, Lieber C M. Chem. Rev., 2015, 116(1):215.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[12] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[15] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.