中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1206-1214 DOI: 10.7536/PC170619 Previous Articles   Next Articles

Special Issue: 电化学有机合成; 金属有机框架材料

• Review •

The Electrochemical Sensors Based on MOF and Their Applications

Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*   

  1. Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21375031, 21765006), the Natural Science Foundation of Guangxi Province, China (No. 2015GXNSFFA139005), and the High Level Innovation Teams of Guangxi Colleges & Universities and Outstanding Scholars Program, China (No. Guijiaoren[2014]49).
PDF ( 3191 ) Cited
Export

EndNote

Ris

BibTeX

Metal organic framework is a kind of three-dimensional framework porous materials self-assembly by a structure of organic ligands and metal centers. Because of the structure of metal organic complex framework, it has good chemical properties. Metal-organic frameworks have become more and more mature when applied to material analysis. Significant progress has also been achieved in the application of electrochemical sensors. In this paper, the newly found preparing approaches to the mental-organic frameworks, constructing electrochemical sensor methods as well as the summary of its application in electrochemical sensor based on MOF are presented. The problems and the limitations in metal-organic frameworks application to the electrochemical sensors are also involved. At the end, we briefly discuss the direction and expectations of electrochemical sensor based on metal-organic frameworks.
Contents
1 Introduction
2 Methods for preparing MOF modified electrode
2.1 Layer-by-Layer self-assembly
2.2 Electro polymerization
2.3 Solvothermal Method
3 The role of MOF in electrochemical sensor
3.1 Catalysis
3.2 Improvement of surface areas
3.3 Electroactive immobilization
3.4 Molecular recognition
4 Application in electrochemical sensor about MOF
4.1 Application in the determination of organics
4.2 Application in the determination of inorganic ions
4.3 Application in the determination of biomacromolecules
5 Conclusion

CLC Number: 

[1] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402:276.
[2] Frasconi M, Tel-Vered R, Riskin M, Willner I. Anal. Chem., 2010, 82:2512.
[3] Yin Z, Zhou Y L, Zeng M H, Kurmoo M. Dalton Trans., 2015, 44:5258.
[4] Hu Z, Deibert B J, Li J. Chem. Soc. Rev., 2014, 43:5815.
[5] Guillerm V, Weseliński ? J, Belmabkhout Y, Cairns A, D'Elia V, Wojtas ?, Adil K, Eddaoudi M. Nat. Chem., 2014, 6:673.
[6] Hoskins B F, Robson R. J. Am. Chem. Soc., 1990, 112:1546.
[7] Yaghi O M, Li J M, Li H. Nature, 1995, 378:703.
[8] Chen B, Eddaoudi M, Hyde ST, O'Keeffe M, Yaghi O M. Science, 2001, 291:1021.
[9] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M. Science, 2003, 300:1127.
[10] Li Y W, Li J R, Wang L F, Zhou B Y, Chen Q, Bu X H. J. Mater. Chem. A, 2013, 1:495.
[11] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341:1230444.
[12] Chen G J, Wang J S, Jin F Z, Liu M Y, Zhao C W, Li Y A, Dong Y B. Inorg. Chem., 2016, 55:3058.
[13] Pascanu V, Carson F, Solano M V, Su J, Zou X D, Johansson M J, Matute B M. Chem.-Eur. J., 2016, 22:3522.
[14] Adhikari C, Chakraborty A. ChemPhysChem, 2016, 17:1070.
[15] Lahav M, Shipway A N, Willner I, Nielsen M B, Stoddart J F. J. Electroanal. Chem., 2000, 482:217.
[16] Shipway A N, Lahav M, Blonder R, Willner I. Chem. Mater., 1999, 11:13.
[17] Lahav M, Shipway A N, Willner I. J. Chem. Soc., Perkin Trans. 2, 1999, 9:1925.
[18] Guerrero V V, Yoo Y, McCarthy M C, Jeong H K. J. Mater. Chem., 2010, 20:3938.
[19] Jiang M, Braiek M, Florea A, Chrouda A, Farre C, Bonhomme A, Bessueille F, Vocanson F, Zhang A, Renault M J. Toxins, 2015, 7:3540.
[20] Mueller U, Schubert M, Teich F, Puetter H, Arndta S K, Pastré J. J. Mater. Chem., 2006, 16:626.
[21] Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels B F, de Vos D E. Chem. Mater., 2009, 21:2580.
[22] Liu X, Fu W, Bouwman E. Chem. Commun., 2016, 52:6926.
[23] Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H. ACS Appl. Mater. Interfaces, 2014, 6:11573.
[24] Liu T F, Feng D, Chen Y P, Zhou L F, Bosch M, Yuan S, Wei Z, Fordham S, Wang K, Zhou H C. J. Am. Chem. Soc., 2014, 137:413.
[25] Ling P, Lei J, Ju H. Anal. Chem., 2016, 88:10680.
[26] Zhang Y, Bo X, Nsabimana A, Han C, Li M, Guo L P. J. Mater. Chem. A, 2015, 3:732.
[27] Zhuang R R, Jian F F. J. Solid State Electrochem., 2010, 14:747.
[28] Zhao M, Ou S, Wu C D. Acc. Chem. Res., 2014, 47:1199.
[29] Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I. J. Am. Chem. Soc., 2008, 130:9726.
[30] Guo Z Z, Florea A, Cristea C, Bessueillea F, Vocansonc F, Goutalandc F, Zhang A D, Sǎndulescu R, Lagarde F, Jaffrejic-Renault N. Sens. Actuators, B, 2015, 207:960.
[31] Yang Y K, Fang G Z, Wang X M, Liu G Y, Wang S. Biosens. Bioelectron., 2016, 77:1134.
[32] Iskierko Z, Sharma P S, Prochowicz D, Fronc K, D'Souza F, Toczyd?owska D, Stefaniak F, Noworyta K. ACS Appl. Mater. Interfaces, 2016, 8:19860.
[33] Yehezkeli O, Yan Y M, Baravik I, Vered R T, Willner I. Chem.-Eur. J., 2009, 15:2674.
[34] Yehezkeli O, Tel-Vered R, Raichlin S, Willner I. ACS Nano, 2011, 5:2385.
[35] Li X, Yu S, Yan T, Zhang Y, Du B, Wu D, Wei Q. Biosens. Bioelectron., 2016, 89:1020.
[36] Feng D, Liu T F, Su J, Bosch M, Wei Z, Wan W, Chen Y P, Wang X, Wang K, Lian,X, Gu Z Y, Park J, Zou X, Zhou H C. Nat. Commun., 2015, 6:1.
[37] Li P, Moon S Y, Guelta M A, Harvey S P, Hupp J T, Farha O K. J. Am. Chem. Soc., 2016, 138:8052.
[38] Xuan W, Zhang M, Liu Y, Chen Z, Cui Y. J. Am. Chem. Soc., 2012, 134:6904.
[39] Zhang Z, Xiang S, Zheng Q, Rao X, Mondal J U, Arman H D, Qian G, Chen B. Cryst. Growth Des., 2010, 10:2372.
[40] 张春艳(Zhang C Y), 王培龙(Wang P L), 石雷(Shi L), 苏晓鸥(Su X O). 分析化学(Chinese J. Anal. Chem.), 2016, 44:1859.
[41] Metzger T S, Tel-Vered R, Willner I. Small, 2016, 12:1605.
[42] Guo Z, Florea A, Jiang M, Mei Y, Zhang W, Zhang A, Sǎndulescu R, Renault N J. Coatings, 2016, 6:42.
[43] 尚树川(Shang S C), 孔令强(Kong L Q), 蔡婷婷(Cai T T), 康琪(Kang Q), 申大忠(Shen D Z). 化学传感器(Chemical Sensors), 2015, 3:004.
[44] Morozan A, Jaouen F. Energ Environ. Sci., 2012, 5:9269.
[45] Ji J, Zhou Z, Zhao X, Sun J, Sun X. Biosens. Bioelectron.. 2015, 66:590.
[46] Yildiz H B, Freeman R, Gill R, Willner I. Anal. Chem., 2008, 80:2811.
[47] Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari A R. Biosens. Bioelectron., 2013, 42:426.
[48] Yang L, Kinoshita S, Yamada T, Kanda S, Kitagawa H, Tokunaga M, Ishimoto T, Ogura T, Nagumo R, Miyamoto A, Koyama M. Angew. Chem. Int. Ed., 2010, 122:5476.
[49] Liu H, Mu L, Chen X, Wang J, Wang S, Sun B. J. Agric. Food. Chem., 2017, 65:986.
[50] Liu J, Zhang L, Lei J, Shen H, Ju H. ACS Appl. Mater. Interfaces, 2017, 9:2150.
[51] Zhang C, Wang X, Hou M, Li X, Wu X, Ge J. ACS Appl. Mater. Interfaces, 2017, 9:13831.
[52] Wu B, Hou L, Du M, Zhang T, Wang Z, Xue Z, Lu X. RSC Adv., 2014, 4:53701.
[53] Shi L, Zhu X, Liu T, Zhao H, Lan M. Sens. Actuator B-Chem., 2016, 227:583.
[54] Wei X, Wu T, Yuan Y, Ma X, Li J. Anal. Methods, 2017, 9:1771.
[55] Riskin M, Tel-Vered R, Willner I. Adv. Mater., 2010, 22:1387.
[56] Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I. Anal. Chem., 2011, 83:3082.
[57] Villalonga R, Díez P, Eguílaz M, Martínez P, Pingarrónet M J. ACS Appl. Mater. Interfaces, 2012, 4:4312.
[58] Villalonga R, Díez P, Yáñez-Sedeño P, Pingarrón J M. Electrochim. Acta, 2011, 56:4672.
[59] Florea A, Guo Z Z, Cristea C, Bessueillea F, Vocansonc F, Goutalandc F, Dzyadevychd S, Sǎndulescub R, Renaulta N J. Talanta, 2015, 138:71.
[60] Zhang J, Wang C, Niu Y, Li S, Luo R. Sens. Actuator B-Chem., 2016, 249:749.
[61] Wu T, Wei X, Ma X, Li J. Microchim. Acta, 2017, 184:1.
[62] Riskin M, Tel-Vered R, Frasconi M, Yavo N, Willner I. Chem. -Eur. J., 2010, 16:7114.
[63] 马雄辉(Ma X H), 韦柳鸽(Wei L G), 吴婷(Wu T), 李建平(Li J P). 分析测试学报(Journal of Instrumental Analysis), 2017, 36:91.
[64] Do M H, Florea A, Farre C, Bonhonmme A, Besueille F, Vocanson F. Int. J. Environ. Anal. Chem., 2015, 95:1489.
[65] Wang Z, Li H, Chen J, Xue Z, Wu B, Lu X. Talanta, 2011, 85:1672.
[66] Tran T Q N, Das G, Yoon H H. Sens. Actuator B-Chem., 2017, 243:78.
[67] Wang Y, Wu Y, Xie J, Hu X. Sens. Actuator B-Chem., 2013, 177:1161.
[68] Cui L, Wu J, Li J, Ju H. Anal. Chem., 2015, 87:10635.
[69] Riskin M, Tel-Vered R, Lioubashevski O, Willner I. J. Am. Chem. Soc., 2009, 131:7368.
[70] Ben-Amram Y, Riskin M, Willner I. Analyst, 2010, 135:2952.
[71] Shen W J, Zhuo Y, Chai Y Q, Yuan R. Anal. Chem., 2015, 87:11345.
[72] Ling P, Lei J, Zhang L, Ju H. Anal. Chem., 2015, 87:3957.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[12] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[13] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[14] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[15] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.