中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1000-1007 DOI: 10.7536/PC170618 Previous Articles   Next Articles

• Review •

Application of in vivo Solid-Phase Microextraction on Pollutants Analysis in Living Animals and Plants

Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Siming Huang, Gangfeng Ouyang*   

  1. Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377172, 21477166, 21527813, 21677182).
PDF ( 1010 ) Cited
Export

EndNote

Ris

BibTeX

As a sampling and sample preparation technique which is convenient, rapid as well as environmentally-friendly, solid-phase microextraction has attracted widespread attention. Within the scope of its application on in vivo analysis, solid-phase microextraction has been gradually used for highly-efficient detection of various analytes of interest in living animals and plants with the new illustrations on extraction kinetics of solid-phase microextraction, together with development on novel in vivo sampling fibers. In this article we give an overview of the proposal of various calibration methods for quantification, recent investigations on the extraction kinetics of in vivo sampling, and preparations of novel samplers for in vivo solid-phase microextraction, apart from rapid detection of multiple pollutants in living animals or plants, as well as continuous long-term monitoring of uptake and elimination of pollutants therein. Potential application and future trends of development of in vivo solid-phase microextraction are also discussed.
Contents

CLC Number: 

[1] Ouyang G, Pawliszyn J. Anal. Chim. Acta, 2008, 627(2):184.
[2] Ai J. Anal. Chem.,1997, 69(6):1230.
[3] Ai J. Anal. Chem., 1997, 69(16):3260.
[4] Zhou S, Zhao W, Pawliszyn J. Anal. Chem., 2008, 80(2):481.
[5] Zhang X, Oakes K D, Luong D, Metcalfe C D, Pawliszyn J, Servos M R. Anal. Chem., 2011, 83(6):2371.
[6] Zhang X, Oakes K D, Cui S, Bragg L, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2010, 44(9):3417.
[7] Chen Y, Pawliszyn J. Anal. Chem., 2004, 76(19):5807.
[8] Ouyang G, Zhao W, Pawliszyn J. Anal. Chem., 2005, 77(24):8122.
[9] Zhao W, Ouyang G, Alaee M, Pawliszyn J. J. Chromatogr. A, 2006, 1124(1):112.
[10] Zhang X, Oakes K D, Hoque M E, Luong D, Taheri-Nia S, Lee C, Smith B M, Metcalfe C D, de Solla S, Servos M R. Anal. Chem., 2012, 84(16):6956.
[11] Togunde O P, Lord H, Oakes K D, Servos M R, Pawliszyn J. J. Sep. Sci., 2013, 36(1):219.
[12] Zhang X, Oakes K D, Hoque M E, Luong D, Metcalfe C D, Pawliszyn J, Servos M R. Anal. Chem., 2011, 83(9):3365.
[13] Zhang X, Cai J, Oakes K D, Breton F, Servos M R, Pawliszyn J. Anal. Chem., 2009, 81(17):7349.
[14] Zhou S, Oakes K D, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2008, 42(16):6073.
[15] Yeung J C Y, Vuckovic D, Pawliszyn J. Anal. Chim. Acta,2010, 665(2):160.
[16] Ouyang G, Oakes K D, Bragg L, Wang S, Liu H, Cui S, Servos M R, Dixon D G, Pawliszyn J. Environ. Sci. Technol., 2011, 45(18):7792.
[17] Ouyang G, Pawliszyn J. J. Chromatogr. A, 2007, 1168(1):226.
[18] Oomen A G, Mayer P, Tolls J. Anal. Chem., 2000, 72(13):2802.
[19] Kramer N I, van Eijkeren J C, Hermens J L. Anal. Chem., 2007, 79(18):6941.
[20] ter Laak T L, van Eijkeren J C, Busser F J, van Leeuwen H P, Hermens J L. Environ. Sci. Technol., 2009, 43(5):1379.
[21] Benhabib K, Town R M, van Leeuwen H P. Langmuir, 2009, 25(6):3381.
[22] Zieli Dn' ska K, van Leeuwen H P, Thibault S, Town R M. Langmuir, 2012, 28(41):14672.
[23] Xu J, Huang S, Jiang R, Cui S, Luan T, Chen G, Qiu J, Cao C, Zhu F, Ouyang G. Anal. Chim. Acta, 2016, 917:19.
[24] Jiang R, Xu J, Lin W, Wen S, Zhu F, Luan T, Ouyang G. Anal. Chim. Acta, 2015, 900:111.
[25] Jiang R, Xu J, Zhu F, Luan T, Zeng F, Shen Y, Ouyang G. J. Chromatogr. A, 2015, 1411:34.
[26] Xu J, Huang S, Wei S, Yang M, Cao C, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2016, 88(18):8921.
[27] Ouyang G, Vuckovic D, Pawliszyn J. Chem. Rev., 2011, 111(4):2784.
[28] Zhu F, Xu J, Ke Y, Huang S, Zeng F, Luan T, Ouyang G. Anal. Chim. Acta, 2013, 794:1.
[29] Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Trends Anal. Chem., 2016, 85:26.
[30] Togunde O P, Oakes K D, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2012, 46(10):5302.
[31] Zhang X, Oakes K D, Wang S, Servos M R, Cui S, Pawliszyn J, Metcalfe C D. TrAC, Trends Anal. Chem., 2012(32):31.
[32] Baker B, Sinnott M. J. Chromatogr. A, 2009, 1216(48):8442.
[33] Loi R X, Solar M C, Weidenhamer J D. J. Chem. Ecol., 2008, 34(1):70.
[34] Limmer M A, Holmes A J, Burken J G. Environ. Sci. Technol., 2014, 48(18):10634.
[35] Wu Q, Wu D, Guan Y. Anal. Chem., 2013, 85(23):11524.
[36] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6):1861.
[37] McCann J T, Li D, Xia Y. J. Mater. Chem., 2005, 15(7):735.
[38] Li D, Xia Y. Nano Lett., 2004, 4(5):933.
[39] Pham Q P, Sharma U, Mikos A G. Tissue Eng., 2006, 12(5):1197.
[40] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17(14):R89.
[41] Xu J, Huang S, Wu R, Jiang R, Zhu F, Wang J, Ouyang G. Anal. Chem., 2015, 87(6):3453.
[42] Peltenburg H, Droge S T, Hermens J L, Bosman I J. J. Chromatogr. A, 2015, 1390:28.
[43] Qiu J, Chen G, Zhu F, Ouyang G. J. Chromatogr. A, 2016, 1455:20.
[44] Xu J, Wu R, Huang S, Yang M, Liu Y, Liu Y, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2015, 87(20):10593.
[45] Qu Q, Gu C, Gu Z, Shen Y, Wang C, Hu X. J. Chromatogr. A, 2013, 1282:95.
[46] Wang S, Jiang S P, Wang X. Nanotechnology, 2008, 19(26):265601.
[47] Xia X, Leidy R B. Anal. Chem., 2001, 73, 9):2041.
[48] Xu L, Feng J, Liang X, Li J, Jiang S. J. Sep. Sci., 2012, 35(12):1531.
[49] Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Anal. Chem., 2016, 88(11):5841.
[50] Zheng J, Huang J, Xu F, Zhu F, Wu D, Ouyang G. Nanoscale, 2017, 9(17):5545.
[51] Bai Z, Pilote A, Sarker P K, Vandenberg G, Pawliszyn J. Anal. Chem., 2013, 85(4):2328.
[52] Huang S, Xu J, Wu J, Hong H, Chen G, Jiang R, Zhu F, Liu Y, Ouyang G. Talanta, 2017, 168:263.
[53] Reiche N, Mothes F, Fiedler P, Borsdorf H. Environ. Monit. Assess., 2013, 185(9):7133.
[54] O'Connell S G, Kerkvliet N I, Carozza S, Rohlman D, Pennington J, Anderson K A. Environ. Int., 2015, 85:182.
[55] Allan I J, Bæk K, Kringstad A, Roald H E, Thomas K V. Environment international, 2013, 59:462.
[56] Zhang X, Es-Haghi A, Musteata F M, Ouyang G, Pawliszyn J. Anal. Chem., 2007, 79(12):4507.
[57] Es-Haghi A, Zhang X, Musteata F M, Bagheri H, Pawliszyn J. Analyst, 2007, 132(7):672.
[58] Cudjoe E, Bojko B, de Lannoy I, Saldivia V, Pawliszyn J. Angew. Chem. Int. Ed., 2013, 52(46):12124.
[59] Bessonneau V, Zhan Y, de Lannoy I A, Saldivia V, Pawliszyn J. J. Chromatogr. A, 2015, 1424:134.
[60] Vuckovic D, de Lannoy I, Gien B, Shirey R E, Sidisky L M, Dutta S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(23):5344.
[61] Lord H L, Zhang X, Musteata F M, Vuckovic D, Pawliszyn J. Nature Protocols, 2011, 6(6):896.
[62] Vuckovic D, Risticevic S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(25):5618.
[63] Vuckovic D, de Lannoy I, Gien B, Yang Y, Musteata F M, Shirey R, Sidisky L, Pawliszyn J. J. Chromatogr. A, 2011, 1218(21):3367.
[64] Wang S, Oakes K D, Bragg L M, Pawliszyn J, Dixon G, Servos M R. Chemosphere, 2011, 85(9):1472.
[65] Xu J, Luo J, Ruan J, Zhu F, Luan T, Liu H, Jiang R, Ouyang G. Environ. Sci. Technol., 2014, 48(14):8012.
[66] Adolfsson-Erici M, Åkerman G, McLachlan M S. Chemosphere, 2012, 88(1):62.
[67] Qiu J, Chen G, Zhou H, Xu J, Wang F, Zhu F, Ouyang G. Sci. Total Environ., 2016, 550:1134.
[68] Qiu J, Chen G, Xu J, Luo E, Liu Y, Wang F, Zhou H, Liu Y, Zhu F, Ouyang G. J. Hazard. Mater., 2016, 316:52.
[69] Chen G, Jiang R, Qiu J, Cai S, Zhu F, Ouyang G. Chemosphere, 2015, 138:584.
[1] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*. Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(9): 1127-1141.
[2] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[3] Han Qiang, Wang Zonghua, Zhang Xiaoqiong, Ding Mingyu. Graphene and Its Composites in Sample Preparation [J]. Progress in Chemistry, 2014, 26(05): 820-833.
[4] Shan Guoqiang, Sun Huaihua, Hou Zheng, Zhu Lingyan. Recent Advances in Derivatization for Chromatographic Determination of Perfluoroalkyl Acids [J]. Progress in Chemistry, 2012, (10): 2019-2027.
[5] Yu Qiongwei, Feng Yuqi. Application of Liquid-Phase Deposition in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(6): 1211-1223.
[6] Cai Yaqi,Liu Jiyan,Jiang Guibin**. Progress of Coupling Solid-Phase Microextraction to Liquid Chromatography [J]. Progress in Chemistry, 2004, 16(05): 708-.
[7] Yi Jun,Li Yunchun,Gong Zhenbin**. Progress on Sample Preparation Techniques for Analysis of Pesticide Residues in Foodstuffs [J]. Progress in Chemistry, 2002, 14(06): 415-.