中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1127-1141 DOI: 10.7536/PC170610 Previous Articles   Next Articles

• Review •

Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application

Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*   

  1. Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377172, 21477166, 21527813, 21677182).
PDF ( 1328 ) Cited
Export

EndNote

Ris

BibTeX

Convenient, rapid as well as environmentally-friendly, solid-phase microextraction is(SPME) a sample preparation technique, which draws widespread attention among the scientific community. The extraction phases in the SPME fibers determine their selectivity and extraction efficiency, hence, a series of new fiber coatings with excellent physical and chemical properties are developed for detection of various small organic molecules in complex sample matrices. Herein, we give a brief review of some materials widely used for the preparation of new SPME fibers, including polymers, carbonaceous materials, metal-organic framework, and some other materials, with the emphasis on the fiber preparation methodologies, the microstructures and extraction properties of the novel fiber coatings, together with applications of the synthesized fibers on environmental analysis, food analysis and inspection on textile and leather samples. Furthermore, future developing trends and application prospects of the new fiber coatings are discussed.
Contents
1 Introduction
2 Polymers
2.1 Commonly used polymers
2.2 Porous polymers
2.3 Molecularly-imprinted polymers
2.4 Polyelectrolytes
2.5 Electrospining
3 Carbonaceous materials
3.1 Graphene
3.2 Carbon nanotubes
3.3 Porous carbons
4 Metal-organic framework
4.1 MIL
4.2 MAF
4.3 Bio-MOFs
4.4 MOF@IL
4.5 MOF-polymer composite
5 Other materials
5.1 Titanium dioxide nanomaterials
5.2 C18
5.3 Mesoporous organosilica
6 Conclusion

CLC Number: 

[1] Arthur C L, Pawliszyn J. Anal. Chem., 1990, 62(19):2145.
[2] Ouyang G, Vuckovic D, Pawliszyn J. Chem. Rev., 2011, 111(4):2784.
[3] Spietelun A, Pilarczyk M, Kloskowski A, Namie Ds' nik J. Chem. Soc. Rev., 2010, 39(11):4524.
[4] Fontanals N, Marcé R, Borrull F. J. Chromatogr. A, 2007, 1152(1):14.
[5] Popp P, Paschke A. Chromatographia, 1997, 46(7):419.
[6] Xu J, He S, Jiang R, Zhu F, Ruan J, Liu H, Luan T, Ouyang G. Anal. Methods, 2014, 6(13):4895.
[7] Zhu F, Ruan W, He M, Zeng F, Luan T, Tong Y, Lu T, Ouyang G. Anal. Chim. Acta, 2009, 650(2):202.
[8] Ke Y, Zhu F, Jiang R, Wang Y, Yue L, Liu H, Zeng F, Ouyang G. Microchem. J., 2014, 112:159.
[9] Cai J, Zhu F, Ruan W, Liu L, Lai R, Zeng F, Ouyang G. Microchem. J., 2013, 110:280.
[10] Ye D, Wu S, Xu J, Jiang R, Zhu F, Ouyang G. J. Chromatogr. Sci., 2016, 54(2):112.
[11] Liu S, Hu Q, Qiu J, Wang F, Lin W, Zhu F, Wei C, Zhou N, Ouyang G. Environ. Sci. Technol., 2017, 51(9):5137.
[12] Duan C, Shen Z, Wu D, Guan Y. TrAC, Trends Anal. Chem., 2011, 30(10):1568.
[13] Ouyang G, Pawliszyn J. TrAC, Trends Anal. Chem., 2006, 25(7):692.
[14] Ouyang G, Cui S, Qin Z, Pawliszyn J. Anal. Chem., 2009, 81(14):5629.
[15] Qin Z, Bragg L, Ouyang G, Niri V H, Pawliszyn J. J. Chromatogr. A, 2009, 1216(42):6979.
[16] Walendzik G, Baumbach J, Klockow D. Anal. Bioanal. Chem., 2005, 382(8):1842.
[17] Huang S, He S, Xu H, Wu P, Jiang R, Zhu F, Luan T, Ouyang G. Environ. Pollut., 2015, 200:149.
[18] Zhang X, Tsurukawa M, Nakano T, Lei Y, Wania F. Environ. Sci. Technol., 2011, 45(24):10509.
[19] Rodrigues C, Portugal F, Nogueira J. Talanta, 2012, 89:521.
[20] Hu X, Zhang M, Ruan W, Zhu F, Ouyang G. Anal. Chim. Acta, 2012, 736:62.
[21] Liu S, Chen D, Zheng J, Zeng L, Jiang J, Jiang R, Zhu F, Shen Y, Wu D, Ouyang G. Nanoscale, 2015, 7(40):16943.
[22] Trewin A, Cooper A I. Angew. Chem. Int. Ed., 2010, 49(9):1533.
[23] Germain J, Hradil J, Fréchet J M, Svec F. Chem. Mater., 2006, 18(18):4430.
[24] Li B, Huang X, Liang L, Tan B. J. Mater. Chem., 2010, 20(35):7444.
[25] Abbott L J, Colina C M. Macromolecules, 2014, 47(15):5409.
[26] Xu S, Luo Y, Tan B. Macromol. Rapid Commun., 2013, 34(6):471.
[27] Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B. Macromolecules, 2011, 44(8):2410.
[28] Liu S, Hu Q, Zheng J, Xie L, Wei S, Jiang R, Zhu F, Liu Y, Ouyang G. J. Chromatogr. A, 2016, 1450:9.
[29] Zheng J, Liang Y, Liu S, Ding Y, Shen Y, Luan T, Zhu F, Jiang R, Wu D, Ouyang G. Nanoscale, 2015, 7(27):11720.
[30] Wang D, Li F, Chen Z, Lu G, Cheng H. Chem. Mater., 2008, 20(22):7195.
[31] Liang Y, Feng X, Zhi L, Kolb U, Müllen K. Chem. Commun., 2009, 7:809.
[32] Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D. J. Am. Chem. Soc., 2006, 128(35):11652.
[33] Kim T, Slowing I I, Chung P, Lin V SY. ACS Nano, 2010, 5(1):360.
[34] Ortel E, Fischer A, Chuenchom L, Polte J, Emmerling F, Smarsly B, Kraehnert R. Small, 2012, 8(2):298.
[35] Liu R, Ji W, He T, Zhang Z, Zhang J, Dang F. Carbon, 2014, 76:84.
[36] Wickramaratne N P, Xu J, Wang M, Zhu L, Dai L, Jaroniec M. Chem. Mater., 2014, 26(9):2820.
[37] Zheng J, Liang Y, Liu S, Jiang R, Zhu F, Wu D, Ouyang G. J. Chromatogr. A, 2016, 1427:22.
[38] Dickey F H. Proc. Natl. Acad. Sci. U.S.A., 1949, 35(5):227.
[39] Sallacan N, Zayats M, Bourenko T, Kharitonov A B, Willner I. Anal. Chem., 2002, 74(3):702.
[40] Wulff G, Sarhan A. Angew. Chem., 1972, 84(8):364.
[41] Wulff G. Angew. Chem., 1995, 107(17):1958.
[42] Vlatakis G, Andersson L I, Müller R, Mosbach K. Nature, 1993, 361(6413):645.
[43] Bolisay L D, Culver J N, Kofinas P. Biomacromolecules, 2007, 8(12):3893.
[44] Turiel E, Tadeo J, Martin-Esteban A. Anal. Chem., 2007, 79(8):3099.
[45] Mullett W M, Martin P, Pawliszyn J. Anal. Chem., 2001, 73(11):2383.
[46] Barahona F, Turiel E, Martín-Esteban A. Anal. Chim. Acta, 2011, 694(1):83.
[47] Hu Y, Wang Y, Chen X, Hu Y, Li G. Talanta, 2010, 80(5):2099.
[48] Deng D, Zhang J, Chen C, Hou X, Su Y, Wu L. J. Chromatogr. A, 2012, 1219:195.
[49] Davis A P, Wareham R S. Angew. Chem. Int. Ed., 1999, 38(20):2978.
[50] Li L, Lu Y, Bie Z, Chen H Y, Liu Z. Angew. Chem. Int. Ed., 2013, 52(29):7451.
[51] Wang S, Ye J, Bie Z, Liu Z. Chem. Sci., 2014, 5(3):1135.
[52] Friggeri A, Kobayashi H, Shinkai S, Reinhoudt D N. Angew. Chem. Int. Ed., 2001, 40(24):4729.
[53] Chen G, Qiu J, Fang X A, Xu J, Cai S, Chen Q, Liu Y, Zhu F, Ouyang G. Chem. Asian J., 2016, 11(16):2240.
[54] Korostynska O, Arshak K, Gill E, Arshak A. IEEE Sens. J. 2008, 8(1):20.
[55] Vuckovic D, de Lannoy I, Gien B, Shirey R E, Sidisky L M, Dutta S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(23):5344.
[56] Ouyang G, Oakes K D, Bragg L, Wang S, Liu H, Cui S, Servos M R, Dixon D G, Pawliszyn J. Environ. Sci. Technol., 2011, 45(18):7792.
[57] Xu J, Wu R, Huang S, Yang M, Liu Y, Liu Y, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2015, 87(20):10593.
[58] Xu J, Huang S, Wu R, Jiang R, Zhu F, Wang J, Ouyang G. Anal. Chem., 2015, 87(6):3453.
[59] Zhang X, Oakes K D, Wang S, Servos M R, Cui S, Pawliszyn J, Metcalfe C D. TrAC, Trends Anal. Chem., 2012, 32:31.
[60] Wu Q, Wu D, Guan Y. Anal. Chem., 2013, 85(23):11524.
[61] Pham Q P, Sharma U, Mikos A G. Tissue Eng., 2006, 12(5):1197.
[62] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17(14):R89.
[63] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6):1861.
[64] McCann J T, Li D, Xia Y. J. Mater. Chem., 2005, 15(7):735.
[65] Li D, Xia Y. Nano Lett., 2004, 4(5):933.
[66] Zewe J W, Steach J K, Olesik S V. Anal. Chem., 2010, 82(12):5341.
[67] Hong S, Kim J, Na Y S, Park J, Kim S, Singha K, Im G I, Han D K, Kim W J, Lee H. Angew. Chem. Int. Ed., 2013, 52(35):9187.
[68] Taskin M B, Xu R, Zhao H, Wang X, Dong M, Besenbacher F, Chen M. PCCP, 2015, 17(14):9446.
[69] Jeong S I, Kim B S, Kang S W, Kwon J H, Lee Y M, Kim S H, Kim Y H. Biomaterials, 2004, 25(28):5939.
[70] Peltenburg H, Droge S T, Hermens J L, Bosman I J. J. Chromatogr. A, 2015, 1390:28.
[71] Qiu J, Chen G, Zhu F, Ouyang G. J. Chromatogr. A, 2016, 1455:20.
[72] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112(22):8192.
[73] Choi B G, Park H, Yang M H, Jung Y M, Lee S Y, Hong W H, Park T J. Nanoscale, 2010, 2(12):2692.
[74] Rao C, Sood A, Subrahmanyam K, Govindaraj A. Angew. Chem. Int. Ed., 2009, 48(42):7752.
[75] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110(1):132.
[76] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39(1):228.
[77] Zhang S, Du Z, Li G. Anal. Chem., 2011, 83(19):7531.
[78] Zhang H, Lee H K. J. Chromatogr. A, 2011, 1218(28):4509.
[79] Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X. Anal. Chim. Acta, 2010, 678(1):44.
[80] Ponnusamy V K, Jen J F. J. Chromatogr. A, 2011, 1218(39):6861.
[81] Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G. J. Chromatogr. A, 2013, 1300:187.
[82] Li S, Zhu F, Jiang R, Ouyang G. J. Chromatogr. A, 2016, 1429:1.
[83] Qu Q, Gu C, Gu Z, Shen Y, Wang C, Hu X. J. Chromatogr. A, 2013, 1282:95.
[84] Wang S, Jiang S, Wang X. Nanotechnology, 2008, 19(26):265601.
[85] Xia X, Leidy R B. Anal. Chem., 2001, 73(9):2041.
[86] Xu L, Feng J, Liang X, Li J, Jiang S. J. Sep. Sci., 2012, 35(12):1531.
[87] Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Anal. Chem., 2016, 88(11):5841.
[88] Iijima S. Nature, 1991, 354(6348):56.
[89] Saridara C, Brukh R, Iqbal Z, Mitra S. Anal. Chem., 2005, 77(4):1183.
[90] Cai Y, Jiang G, Liu J, Zhou Q. Anal. Chem., 2003, 75(10):2517.
[91] Cai Y, Jiang G, Liu J, Zhou Q. Anal. Chim. Acta, 2003, 494(1):149.
[92] Liu G, Wang J, Zhu Y, Zhang X. Anal. Lett., 2004, 37(14):3085.
[93] Sun Y, Zhang W, Xing J, Wang C. Microchimica Acta, 2011, 173(1/2):223.
[94] Jiang R, Zhu F, Luan T, Tong Y, Liu H, Ouyang G, Pawliszyn J. J. Chromatogr. A, 2009, 1216(22):4641.
[95] Chen G, Qiu J, Xu J, Fang X A, Liu Y, Liu S, Wei S, Jiang R, Luan T, Zeng F, Zhu F, Ouyang G. Chem. Sci., 2016, 7(2):1487.
[96] Chen Y, Vedala H, Kotchey G P, Audfray A, Cecioni S, Imberty A, Vidal S, Star A. ACS Nano, 2011, 6(1):760.
[97] Luo P, Wang H, Gu L, Lu F, Lin Y, Christensen K A, Yang S, Sun Y. ACS Nano, 2009, 3(12):3909.
[98] Cella L N, Chen W, Myung N V, Mulchandani A. J. Am. Chem. Soc., 2010, 132(14):5024.
[99] Reuel N F, Ahn J H, Kim J H, Zhang J, Boghossian A A, Mahal L K, Strano M S. J. Am. Chem. Soc., 2011, 133(44):17923.
[100] Chen D, Feng H, Li J. Chem. Rev., 2012, 112(11):6027.
[101] Zhong X, Bai H, Xu J, Chen H, Zhu Y. Adv. Funct. Mater., 2010, 20(6):992.
[102] Ouyang Y, Shi H, Fu R, Wu D. Sci. Rep., 2013, 3:1430.
[103] Yu L, Yan X. Chem. Commun., 2013, 49(21):2142.
[104] Zheng J, Wang K, Luo E, Wu D, Zhu F, Jiang R, Su C, Wei C, Ouyang G. Anal. Chim. Acta, 2015, 884:44.
[105] Ma T, Liu L, Yuan Z. Chem. Soc. Rev., 2013, 42(9):3977.
[106] Titirici M M, White R J, Brun N, Budarin V L, Su D S, del Monte F, Clark J H, MacLachlan M J. Chem. Soc. Rev., 2015, 44(1):250.
[107] Zheng J, Wang K, Liang Y, Zhu F, Wu D, Ouyang G. Chem. Commun., 2016, 52(41):6829.
[108] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem. Rev., 2012, 112(7):3959.
[109] Li G, Luican-Mayer A, Abanin D, Levitov L, Andrei E Y. Nat. Commun., 2013, 4:1744.
[110] Zhang W, Sun Y, Wu C, Xing J, Li J. Anal. Chem., 2009, 81(8):2912.
[111] Zheng J, Huang J, Xu F, Zhu F, Wu D, Ouyang G. Nanoscale, 2017, 9(17):5545.
[112] Bianchi F, Mattarozzi M, Betti P, Bisceglie F, Careri M, Mangia A, Sidisky L, Ongarato S, Dalcanale E. Anal. Chem., 2008, 80(16):6423.
[113] Frackowiak E, Beguin F. Carbon, 2001, 39(6):937.
[114] Zhu F, Guo J, Zeng F, Fu R, Wu D, Luan T, Tong Y, Lu T, Ouyang G. J. Chromatogr. A, 2010, 1217(50):7848.
[115] Li C, Shi G. Nanoscale, 2012, 4(18):5549.
[116] Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6(5):4020.
[117] Yan Z, Ma L, Zhu Y, Lahiri I, Hahm M G, Liu Z, Yang S, Xiang C, Lu W, Peng Z. ACS Nano, 2012, 7(1):58.
[118] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4(7):4324.
[119] Wang F, Liu S, Yang H, Zheng J, Qiu J, Xu J, Tong Y, Zhu F, Ouyang G. Talanta, 2016, 160:217.
[120] Cui X, Gu Z, Jiang D, Li Y, Wang H, Yan X. Anal. Chem., 2009, 81(23):9771.
[121] Chang N, Gu Z, Wang H, Yan X. Anal. Chem., 2011, 83(18):7094.
[122] Xie L, Liu S, Han Z, Jiang R, Liu H, Zhu F, Zeng F, Su C, Ouyang G. Anal. Chim. Acta, 2015, 853:303.
[123] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309(5743):2040.
[124] Gu Z, Yan X. Angew. Chem. Int. Ed., 2010, 49(8):1477.
[125] Huang H, Lin C, Wu C, Cheng Y, Lin C. Anal. Chim. Acta, 2013, 779:96.
[126] Yang C, Yan X. Anal. Chem., 2011, 83(18):7144.
[127] Yang C, Yan X. J. Mater. Chem., 2012, 22(34):17833.
[128] Huang C, Song M, Gu Z, Wang H, Yan X. Environ. Sci. Technol., 2011, 45(10):4490.
[129] Hong D, Hwang Y K, Serre C, Ferey G, Chang J S. Adv. Funct. Mater., 2009, 19(10):1537.
[130] Huang X, Lin Y, Zhang J, Chen X. Angew. Chem., 2006, 118(10):1587.
[131] He C, Tian J, Liu S, Ouyang G, Zhang J, Chen X. Chem. Sci., 2013, 4(1):351.
[132] Liu C, Li T, Rosi N L. J. Am. Chem. Soc., 2012, 134, 46:18886.
[133] Pardo E, Train C, Liu H, Chamoreau L M, Dkhil B, Boubekeur K, Lloret F, Nakatani K, Tokoro H, Ohkoshi S I. Angew. Chem., 2012, 124(33):8481.
[134] Li T, Kozlowski M T, Doud E A, Blakely M N, Rosi N L. J. Am. Chem. Soc., 2013, 135(32):11688.
[135] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'keeffe M, Yaghi O M. Science, 2002, 295(5554):469.
[136] Liu S, Zhou Y, Zheng J, Xu J, Jiang R, Shen Y, Jiang J, Zhu F, Su C, Ouyang G. Analyst, 2015, 140(13):4384.
[137] Zheng J, Li S, Wang Y, Li L, Su C, Liu H, Zhu F, Jiang R, Ouyang G. Anal. Chim. Acta, 2014, 829:22.
[138] Rowsell J L, Yaghi O M. J. Am. Chem. Soc., 2006, 128(4):1304.
[139] Gu Z, Jiang J, Yan X. Anal. Chem., 2011, 83(13):5093.
[140] Walden P. Bull. Acad. Imper. Sci.,1914:1800.
[141] Mecerreyes D. Prog. Polym. Sci., 2011, 36(12):1629.
[142] Amini R, Rouhollahi A, Adibi M, Mehdinia A. Talanta, 2011, 84(1):1.
[143] Zhou X, Xie P, Wang J, Zhang B, Liu M, Liu H, Feng X. J. Chromatogr. A, 2011, 1218(23):3571.
[144] Zhao Q, Wajert J C, Anderson J L. Anal. Chem., 2009, 82(2):707.
[145] Wei S, Lin W, Xu J, Wang Y, Liu S, Zhu F, Liu Y, Ouyang G. Anal. Chim. Acta, 2017, 971:48.
[146] Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Chem. Mater., 2012, 24(15):2829.
[147] Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Chem. Commun., 2011, 47(33):9522.
[148] Bae T H, Lee J S, Qiu W, Koros W J, Jones C W, Nair S. Angew. Chem. Int. Ed., 2010, 49(51):9863.
[149] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, i Xamena F X L, Gascon J. Nat. Mater., 2015, 14(1):48.
[150] Djozan D, Abdollahi L. Chromatographia, 2003, 57(11/12):799.
[151] Djozan D, Assadi Y, Haddadi S H. Anal. Chem., 2001, 73(16):4054.
[152] Budziak D, Martendal E, Carasek E. J. Chromatogr. A, 2007, 1164(1):18.
[153] Mehdinia A, Mousavi M F, Shamsipur M. J. Chromatogr. A, 2006, 1134(1):24.
[154] Cao D, Lv J, Liu J, Jiang G. Anal. Chim. Acta, 2008, 611(1):56.
[155] Zhang R, Elzatahry A A, Al-Deyab S S, Zhao D. Nano Today, 2012, 7(4):344.
[156] Wen Y, Chen L, Li J, Liu D, Chen L. TrAC, Trends Anal. Chem., 2014, 59:26.
[157] Zhou W, Li W, Wang J, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J. Am. Chem. Soc., 2014, 136(26):9280.
[158] Li M, Huang G, Qiao Y, Wang J, Liu Z, Liu X, Mei Y. Nanotechnology, 2013, 24(30):305706.
[159] Santaella C, Allainmat B, Simonet F, Chanáac C, Labille J R, Auffan M L, Rose J R, Achouak W. Environ. Sci. Technol., 2014, 48(9):5245.
[160] Crossland E J, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J. Nature, 2013, 495(7440):215.
[161] Liu S, Xie L, Zheng J, Jiang R, Zhu F, Luan T, Ouyang G. Anal. Chim. Acta, 2015, 878:109.
[162] Wang F, Zheng J, Qiu J, Liu S, Chen G, Tong Y, Zhu F, Ouyang G. ACS Appl Mater Interfaces, 2017, 9(2):1840.
[163] Li S, Lu C, Zhu F, Jiang R, Ouyang G. Anal. Chim. Acta, 2015, 873:57.
[164] Rissato S R, Galhiane M S, Apon B M, Arruda M S. J. Agric. Food Chem., 2005, 53(1):62.
[165] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359(6397):710.
[166] Lai C, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125(15):4451.
[167] Hou J, Ma Q, Du X, Deng H, Gao J. Talanta, 2004, 62(2):241.
[168] Du X, Wang Y, Tao X, Deng H. Anal. Chim. Acta, 2005, 543(1):9.
[169] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279(5350):548.
[170] Hashemi P, Shamizadeh M, Badiei A, Poor P Z, Ghiasvand A R, Yarahmadi A. Anal. Chim. Acta, 2009, 646(1):1.
[171] Wang G, Otuonye A N, Blair E A, Denton K, Tao Z, Asefa T. J. Solid State Chem., 2009, 182(7):1649.
[172] Díaz I, Mohino F, Blasco T, Sastre E, Pérez-Pariente J n. Microporous Mesoporous Mater., 2005, 80(1):33.
[173] Zhu F, Liang Y, Xia L, Rong M, Su C, Lai R, Li R, Ouyang G. J. Chromatogr. A, 2012, 1247:42.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[3] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[6] Lin Gu, Kai Zhang, Haixiang Yu, Guangxia Dong, Xingbo Qiao, Haifeng Wen. Synthesis of Sludge Carbon-Based Catalytic Materials and Their Application in Water Environment [J]. Progress in Chemistry, 2020, 32(9): 1412-1426.
[7] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[8] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[9] Chen Zhou, Juntao Wu*. Bioinspired Micro-Nano Fibrous Adhesion Materials [J]. Progress in Chemistry, 2018, 30(12): 1863-1873.
[10] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Siming Huang, Gangfeng Ouyang*. Application of in vivo Solid-Phase Microextraction on Pollutants Analysis in Living Animals and Plants [J]. Progress in Chemistry, 2017, 29(9): 1000-1007.
[11] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[12] Lin Heng, Zhang Hui. Treatment of Organic Pollutants Using Electro-Fenton and Electro-Fenton-Like Process in Aqueous Solution [J]. Progress in Chemistry, 2015, 27(8): 1123-1132.
[13] Wang Yihan, Wakisaka Minato. Nanofiber Fabrication Techniques and Its Applicability to Chitosan [J]. Progress in Chemistry, 2014, 26(11): 1821-1831.
[14] Tian Yu, Zhu Caizhen, Gong Jinghua, Ma Jinghong, Yang Shuguang, Xu Jian. In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers [J]. Progress in Chemistry, 2013, 25(10): 1751-1762.
[15] Zhu Mingshan, Chen Penglei*, Liu Minghua*. Ag/AgX (X=Cl, Br, I): A New Type Plasmonic Photocatalysts [J]. Progress in Chemistry, 2013, 25(0203): 209-220.