中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1008-1020 DOI: 10.7536/PC170566 Previous Articles   Next Articles

• Review •

Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals

Lin Han, Baoliang Chen*   

  1. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21425730, 21537005).
PDF ( 1262 ) Cited
Export

EndNote

Ris

BibTeX

Environmental persistent free radicals (EPFRs) can persist in environment for hours to days, and have potential environmental and public health impacts, which has attracted more and more attention in recent years. Environmental persistent free radicals are found to exist in a variety of environmental media, such as combustion particles and organic contaminated soil, and they are considered to be an emerging pollutant recently. Compared with transient free radicals, environmental persistent free radicals have received relatively less attention, and the generating mechanisms and environmental impacts remain unclear. Meanwhile, environmental persistent free radicals are widely distributed in the environment, which makes them more complex in their research. This review highlights EPFRs from the following aspects:detection methods, generating mechanisms, speciation types, environmental characteristics (persistence, stability, and reactivity), the harm to the environment and the elimination method. By studying the fate behaviors of environmental persistent free radicals, this article proposes a possible migration pathway in environment. The purpose of this review is to have a more comprehensive understanding of the EPFRs, especially to help reduce the harm to the human and environment, and provide scientific basis for researchers to have a deeper study on it.
Contents
1 Introduction
2 Environmental persistent free radicals (EPFRs)
3 Generation mechanism of EPFRs
3.1 The media of the EPFRs formation
3.2 The precursors of the EPFRs
3.3 The influential conditions of EPFRs formation
3.4 The formation mechanism of the EPFRs
4 Species of EPFRs
5 Persistence and stability of EPFRs
6 Reactivity of EPFRs and its application on the environmental pollution control
7 Potential hazards of EPFRs and its elimination methods
7.1 Potential hazards of EPFRs
7.2 Elimination methods of EPFRs
8 Environmental chemistry behaviors of EPFRs
9 Conclusion

CLC Number: 

[1] Gomberg M. J. Am. Chem. Soc., 1900, 22:757.
[2] Leighton P A. Photochemistry of Air Pollution, 1961, 89.
[3] 贾曾荣(Jia Z R). 北京教育学院学报(Journal of Beijing Institute of Education), 1998, 40.
[4] 朱利中(Zhu L Z).环境化学(Environmental Chemistry). 北京:高等教育出版社(Beijing:China Higher Education Press), 2011. 55.
[5] Heimer N E. J. Org. Chem., 1977, 42:3767.
[6] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels,2008, 22:1027.
[7] Maskos Z, Dellinger B. Energy Fuels, 2008, 22:382.
[8] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels, 2005, 19:2466.
[9] Maskos Z, Dellinger B. Energy Fuels, 2008, 22:1675.
[10] Maskos Z, Khachatryan L, Cueto R, Pryor W A, Dellinger B. Energy Fuels, 2005, 19:791.
[11] Pryor W A, Hales B J, Premovic P I,Church D F. Science, 1983, 220:425.
[12] Gehling W, Dellinger B. Environ. Sci. Technol., 2013, 47:8172.
[13] Shi T, Schins R P E, Knaapen A M, Kuhlbusch T, Pitz M, Heinrich J, Borm P J A. J. Environ. Monit., 2003, 5:550.
[14] Gehling W, Khachatryan L, Dellinger B. Environ. Sci. Technol., 2014, 48:4266.
[15] Arangio A M, Tong H, Socorro J, Pöschl U, Shiraiwa M. Atmo. Chem. Phys., 2016, 16:13105.
[16] Squadrito G L, Cueto R, Dellinger B, Pryor W A. Free Radical Biol. Med., 2001, 31:1132.
[17] Dellinger B, Pryor W A, Cueto R, Squadrito G L, Deutsch W A. P. Combust. Inst., 2000, 28:2675.
[18] Dellinger B, Pryor W A, Cueto R, Squadrito G L, Hegde V, Deutsch W A. Chem. Res. Toxicol., 2001, 14:1371.
[19] Gong F, Luo L, Yao Y, Dai D, Lu W, Chen W. Chem. Eng. J., 2016, 304:440.
[20] Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B. Environ. Sci. Technol., 2016, 50:694.
[21] Liao S, Pan B, Li H, Zhang D, Xing B. Environ. Sci. Technol., 2014, 48:8581.
[22] Fang G, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D. Environ. Sci. Technol., 2014, 48:1902.
[23] Fang G, Liu C, Gao J, Dionysiou D D, Zhou D. Environ. Sci. Technol., 2015, 49:5645.
[24] Fang G, Zhu C, Dionysiou D D, Gao J,Zhou D. Bioresour. Technol., 2015, 176:210.
[25] Gao X, Feng J. Mini-Rev. Org. Chem., 2011, 8:438.
[26] Kiruri L W, Dellinger B, Lomnicki S. Environ. Sci. Technol., 2013, 47:4220.
[27] Dellinger B, Lomnicki S, Khachatryan L, Maskos Z, Hall R W, Adounkpe J, McFerrin C, Truong H. P. Combust. Inst., 2007, 31:521.
[28] Khachatryan L, Dellinger B. Environ. Sci. Technol., 2011, 45:9232.
[29] Khachatryan L, Vejerano E, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2011, 45:8559.
[30] Khachatryan L, McFerrin C A, Hall R W, Dellinger B. Environ. Sci. Technol., 2014, 48:9220.
[31] Kelley M A, Hebert V Y, Thibeaux T M, Orchard M A, Hasan F, Cormier S A, Thevenot P T, Lomnicki S M, Varner K J, Dellinger B, Latimer B M,Dugas T R. Chem. Res. Toxicol., 2013, 26:1862.
[32] Kelley M A, Thibeauxa T, Heberta V Y, Cormierb S A, Lomnickic S, Dellinger B, DugasT R. Free Radical Biol. Med., 2011, 51:134.
[33] Balakrishna S, Lomnicki S, McAvey K M, Cole R B, Dellinger B,Cormier S A. Part. Fibre. Toxicol., 2009, 6:1.
[34] Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Chem.Biol. Interact., 2006, 160:1.
[35] Ziech D, Franco R, Georgakilas A G, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis M I. Chem. Biol., Interact., 2010, 188:334.
[36] 杨颖(Yang Y), 孙振亚(Sun Z Y). 矿物岩石地球化学通报(Bulletin of Mineral, Petrology and Geochemistry), 2012, 31:287.
[37] 阮秀秀(Ruan X X), 孙万雪(Sun W X), 程玲(Cheng L), 钱光人(Qian G R). 上海大学学报(Journal of Shanghai University (Natural Science)), 2016, 22:114.
[38] Valavanidis A, Iliopoulos N, Gotsis G, Fiotakis K. J. Hazard. Mater., 2008, 156:2803.
[39] Meng J, Smirnova T I, Song X, Moore A, Ren X, Kelley S, Park S, Tilotta D. RSC Advances, 2014, 4:29840.
[40] dela Cruz A L N, Cook R, Dellinger B, Lomnicki S M, Donnelly K C, Kelley M A, Cosgriff D. Environ.Sci. Proc.Impacts, 2014, 16:44.
[41] dela Cruz A L N, Gehling W, Lomnicki S, Cook R, Dellinger B. Environ. Sci. Technol., 2011, 45:6356.
[42] dela Cruz A L N, Cook R L, Lomnicki S M, Dellinger B. Environ. Sci. Technol., 2012, 46:5971.
[43] Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma V K, Wang C. Environ. Sci. Technol., 2017, 51:6000.
[44] Jia H, Nulaji G, Gao H, Wang F, Zhu Y, Wang C. Environ. Sci. Technol., 2016, 50:6310.
[45] Herring P, Khachatryan L, Lomnicki S, Dellinger B. Combust Flame, 2013, 160:2996.
[46] Esaka Y, Okumura N, Uno B, Goto M. Electrophoresis, 2003, 24:1635.
[47] Jung H, Guo B, Anastasio C, Kennedy I M. Atmos. Environ., 2006, 40:1043.
[48] Gligorovski S, Strekowski R, Barbati S, Vione D. Chem. Rev., 2015, 115:13051.
[49] Sterniczuk M, Sad?o J, Strzelczak G, Michalik J. Micropor. Mesopor. Mater., 2014, 195:112.
[50] Bahrle C, Custodis V, Jeschke G, van Bokhoven J A, Vogel F. ChemSusChem, 2014, 7:2022.
[51] Sablier M, Fujii T. Chem. Rev., 2002, 102:2856.
[52] Fleisher A J, Bjork B J, Bui T Q, Cossel K C, Okumura M, Ye J. The Journal of Physical Chemistry Letters, 2014, 5:2241.
[53] Andreozzi L, Castelvetro V, Ciardelli G, Corsi L, Faetti M, Fatarella E, Zulli F. J.Colloid Interface Sci., 2005, 289:455.
[54] He W, Liu Q, Shi L, Liu Z, Ci D, Lievens C, Guo X, Liu M. Bioresour. Technol., 2014, 156:372.
[55] Lomnicki S, Truong H, Vejerano E, Dellinger B. Environ. Sci. Technol., 2008, 42:4982.
[56] Kiruri L W, Khachatryan L, Dellinger B, Lomnicki S. Environ. Sci. Technol., 2014, 48:2212.
[57] Patterson M C, Keilbart N D, Kiruri L W, Thibodeaux C A, Lomnicki S, Kurtz R L, Poliakoff E D, Dellinger B, Sprunger P T. Chem. Phys., 2013, 422:277.
[58] Vejerano E, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2011, 45:589.
[59] Vejerano E, Lomnicki S M, Dellinger B. Environ. Sci. Technol., 2012, 46:9406.
[60] Patterson M C, DiTusa M F, McFerrin C A, Kurtz R L, Hall R W, Poliakoff E D, Sprunger P T. Chem. Phys. Lett., 2017, 670:5.
[61] Assaf N W, Altarawneh M, Oluwoye I, Radny M, Lomnicki S M, Dlugogorski B Z. Environ. Sci. Technol., 2016, 50:11094.
[62] Vejerano E, Lomnicki S, Dellinger B. J.Environ.Monit., 2012, 14:2803.
[63] Chen B, Chen Z, Lv S. Bioresour. Technol., 2011, 102:716.
[64] Xiao X, Chen Z, Chen B. Scientific Reports, 2016, 6:22644.
[65] Xiao X, Chen B. Environ. Sci. Technol., 2017, 51:5473.
[66] Chen X, Chen B. Environ. Sci. Technol., 2016, 50:8568.
[67] 路遥(Lu Y), 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25:838.
[68] Li H, Guo H, Pan B, Liao S, Zhang D, Yang X, Min C, Xing B. Sci.Rep., 2016, 6:24494.
[69] Adounkpe J, Khachatryan L, Dellinger B, Ghosh M. Energy & Fuels, 2009, 23:1551.
[70] 王婷(Wang T), 李浩(Li H), 郭惠莹(Guo H Y), 程正奇(Cheng Z Q), 潘波(Pan B). 环境化学(Environmental Chemistry), 2016, 35:421.
[71] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels, 2013, 27:5306.
[72] Zhu B, Zhao H, Kalyanaraman B, Liu J, Shan G, Du Y, Frei B. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3698.
[73] Zhu B, Shan G, Huang C, Kalyanaraman B, Mao L, Du Y. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:11466.
[74] Zhu B, Kalyanaraman B, Jiang G. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:17575.
[75] Yang L, Liu G, Zheng M, Zhao Y, Jin R, Wu X, Xu Y. Environ. Sci. Technol., 2017, 51:4999.
[76] 王天娇(Wang T J), 陈彤(Chen T), 詹明秀(Zhan M X), 郭颖(Guo Y), 李晓东(Li X D). 环境科学(Environmental Science), 2016, 37:1163.
[77] Li H, Pan B, Liao S, Zhang D, Xing B. Environ. Pollut., 2014, 188:153.
[78] Riesz P, BerdahIt D, Christman C L. Environ. Health Perspect., 1985, 64:233.
[79] Velasco L F, Maurino V, Laurenti E, Ania C. Applied Catalysis A:General, 2013, 453:310.
[80] Wetter C, Studer A. Chem.Commun., 2004, 174.
[81] Suh Y, Buettner G R, Venkataraman S, Treimer S E, Robertson L W, Ludewig G. Environ. Sci. Technol., 2009, 43:2581.
[82] Han C, Liu Y, Ma J, He H. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:21250.
[83] Pedersen J A. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2002, 58:1257.
[84] Tedde J M. Angew. Chem. Int. Ed., 1982, 21:401.
[85] Song Y, Buettner G R, Parkin S, Wagner B A, Roberston L W, Lehmler H J. J. Org. Chem., 2008, 8296.
[86] Ulas G, Lemmin T, Wu Y, Gassner G T, DeGrado W F. Nat. Chem., 2016, 8:354.
[87] Fang G, Gao J, Dionysiou D S, Liu C, Zhou D. Environ. Sci. Technol., 2013, 47:4605.
[88] Wang J, Xu L. Crit. Rev. Environ. Sci. Technol., 2012, 42:251.
[89] Jiang J, Bauer I, Paul A, Kappler A. Environ. Sci. Technol., 2009, 43:3639.
[90] 杨世迎(Yang S Y), 张翱(Zhang A), 任腾飞(Ren T F),张宜涛(Zhang Y T). 化学进展(Progress in Chemistry), 2017, 29:540.
[91] Jiang B, Yao Y, Xie R, Dai D, Lu W, Chen W, Zhang L. Appl. Catal. B:Environmental, 2016, 183:291.
[92] Lomnicki S, Gullett B, Stoger T, Kennedy I, Diaz J, Dugas T R, Varner K, Carlin D J, Dellinger B, Cormier S A. Int. J. Toxicol., 2014, 33:3.
[93] Lord K, Moll D, Lindsey J K, Mahne S, Raman G, Dugas T, Cormier S, Troxlair D, Lomnicki S, Dellinger B, Varner K. J. Recept. Signal Transduct. Res., 2011, 31:157.
[94] Reed J R, Cawley G F, Ardoin T G, Dellinger B, Lomnicki S M, Hasan F, Kiruri L W, Backes W L. Toxicol.Appl.Pharmacol., 2014, 277:200.
[95] Lee G I, Saravia J, You D, Shrestha B, Jaligama S, Hebert V Y, Dugas T R, Cormier S A. Particle and Fibre Toxicology, 2014, 11:1.
[96] Valko M, Jomova K, Rhodes C J, Kuca K, Musilek K. Arch.Toxicol., 2016, 90:1.
[97] Truong H, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2010, 44:1933.
[98] Lucarini M, Pedulli G F. Chem. Soc. Rev., 2010, 39:2106.
[99] Rimmer D L. Eur. J. Soil Sci., 2006, 57:91.
[100] Song W, Chen W, Cooper W J, Greaves J, Miller G E. J. Phys. Chem. A, 2008, 112:7411.
[101] Perez-Bonilla M, SalidoS,van Beek T A,Altarejos J. J. Agric.FoodChem., 2014, 62:144.
[102] Mandal M, Mukherji S. J.Environ.Biol., 2001, 22:301.
[103] 杨莉莉(Yang L L), 刘国瑞(Liu G R), 郑明辉(Zheng M H).中国化学会第30届学术年会(The 30th National Conference of the Chinese Chemical Society).大连(Dalian), 2016.
[104] Qu X, Fu H, Mao J, Ran Y, Zhang D, Zhu D. Carbon, 2016, 96:759.
[105] Fu H, Liu H, Mao J, Chu W, Li Q, Alvarez P J J, Qu X, Zhu D. Environ. Sci. Technol., 2016, 50:1218.
[106] Liu R, Zhu X, Chen B. Sci.Rep., 2017, 7:40711.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[7] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[8] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[11] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[12] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[13] Kaili Gu, Haozhen Li, Jinhua Zhang, Jinxiang Li. Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron [J]. Progress in Chemistry, 2021, 33(10): 1812-1822.
[14] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[15] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.