中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1366-1394 DOI: 10.7536/PC170559 Previous Articles   Next Articles

• Review •

Preparation and Application of Fe3O4 Nanomaterials

Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng   

  1. School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21403091), the Natural Science Foundation of Jiangsu Province (No. BK20130486), and the Project Funded by Jiangsu University for Senior Intellectuals (No. 12JDG093).
PDF ( 7950 ) Cited
Export

EndNote

Ris

BibTeX

Magnetic Fe3O4 nanomaterials, possessing unique physicochemical properties such as quantum size effect, surface interfacial effect, electrical properties and magnetic properties, have attracted intensive research interest and shown potential applications in many fields (such as enviroment, energy) during the past years. In this review, some methods for preparing Fe3O4 in recent years are summarized, including precipitation method, thermal decomposition method, hydrothermal method, microemulsion method and sol-gel method. The advantages and disadvantages of various preparation methods are compared. As for the application of Fe3O4 nanomaterials, the article firstly summarizes their application as adsorbent for removal of heavy metal ions and organic pollutants from wastewater. The application of Fe3O4 nanomaterials in catalysis, including Fe3O4 nanomaterials acting active species and acting as supports for active species (such as noble metal nanoparticles, transition metal oxide, as well as metallic organic compounds) is also overviewed in detail. While applied in environment treatment and chemical catalysis, the largest advantage of Fe3O4 nanomaterials is that they can be easily separated by magnetic separation. Furthermore the application of Fe3O4 nanomaterials in energy storage (such as lithium-ion batteries and super capacitors) and biomedicine (tumor diagnosis and treatment, immobilized enzyme and immunoassay) are also discussed in brief. Finally, some problems in the preparation of Fe3O4 nanomaterials and their future research directions are outlined.
Contents
1 Introduction
2 Synthesis strategies of Fe3O4 nanomaterials
2.1 Precipitation method
2.2 Hydrothermal method
2.3 Thermal decomposition
2.4 Sol-gel method
2.5 Microemulsion method
2.6 Other methods
3 Applications of Fe3O4 nanomaterials
3.1 Environmental treatment
3.2 Chemical catalysis
3.3 Energy storage
3.4 Biomedical
3.5 Other applications
4 Conclusion

CLC Number: 

[1] Gawande M B, Branco P S, Varma R S. Chem. Soc. Rev., 2013, 42:3371.
[2] Ghosh R, Pradhan L, Devi, Y P, Meena S S, Tewari R, Kumar A, Sharmar S, Gajbhiye N S, Vatsa R K, Pande B N, Ningthoujam R S. J. Mater. Chem., 2011, 21:13388.
[3] Nabiyouni G, Julaee M, Ghanbari D, Aliabadi P H, Safaie N. J. Ind. Eng. Chem., 2015, 21:599.
[4] 万栋(Wan D), 王光华(Wang G H), 李文兵(Li W B), 陈坤(Chen K), 李进(Li J). 化工新型材料(New Chem. Mater.), 2014, 9:170.
[5] Jiang Y J, Li G Z, Li X D, Zhang X G. J. Mater. Chem. A, 2014, 2:4779.
[6] Sesigur H, Acma E, Addmir O, Tekin A. Mater. Res. Bull., 1996, 31:1573.
[7] 孟哲(Meng Z), 张冬亭(Zhang D T), 王春平(Wang C P). 光谱实验室(Spectrosc. Lab), 2003, 20:489.
[8] Chen S Y, Feng J, Guo X F, Hong J M, Ding W P. Mater. Lett., 2005, 59:985.
[9] 王光华(Wang G H), 李文兵(Li W B), 万栋(Wan D), 陈坤(Chen K),胡琴(Hu Q). 中国科技论文(China Sciencepaper), 2014, 9:1024.
[10] Qu S C, Yang H B, Ren D W. J. Colloid Interface Sci.,1999, 215:190.
[11] Liu B, Xie W X, Wang D P, Huang W H. Mater. Lett., 2008, 62:3014.
[12] Qiu J D, Xiong M, Liang R P, Peng H P. Biosens. Bioelecron., 2009, 24:2649.
[13] Wu Z J, Wu J H, Xiang J H, Chun M S, Lee K. Colloids. Surf. A, 2006, 279:167.
[14] Guo H F, Hong Z, Lin H Y, Zhang J Q. Mater. Lett., 2008, 62:2196.
[15] Lei W, Liu Y S, Si X D, Xu J, Du W L, Yang J, Zhou T. J. Phys. Lett. A, 2017, 381:314.
[16] 杨华(Yang H), 黄可龙(Huang K L), 刘素琴(Liu S Q), 李卫(Li W). 磁性材料及器件(J. Magn. Mater. Devices), 2003, 34:4.
[17] Fan R, Chen X H, Potdar H S. Mater. Lett., 2002, 56:571.
[18] Zhu M Y, Diao G W. J. Phys. Chem. C, 2011, 115:18923.
[19] Wan J X, Chen X Y, Wang Z H, Yang X G, Qian Y T. J. Cryst. Growth, 2005, 276:571.
[20] Liu J, Sun Z K, Deng Y H, Zou Y, Li C H, Xiong L Q, Gao Y, Li F Y, Zhao D Y. Angew. Chem., 2009, 121:5989.
[21] Huang Y, Zhang L P, Huan W W, Liang X J, Liu X N, Yang Y X. Glass Phys. Chem., 2010, 36:325.
[22] Zhu L P, Liao G H, Bing N C, Wang L L, Xie H Y. J. Solid State Chem., 2011, 184:2405.
[23] Xuan S H, Wang F, Wang Y X, Jimmy C Y, Ken C F. J. Mater. Chem., 2010, 20:5086.
[24] Li X Y, Si Z J, Lei Y Q, Tang J K, Wang S, Su S Q, Song S Y, Zhao L J, Zhang H J. Cryst. Eng. Comm., 2010, 12:2060.
[25] Lv B, Xu Y, Gao Q, Wu D, Sun Y. J. Nanosci. Nanotechnol., 2010, 10:2348.
[26] Xie J, Zhang F, Aronova M, Lei Z, Xin L, Quan Q M, Liu G, Zhang G F, Choi K Y, Kim K Y, Sun X L. Lee S, Sun S H, Leapman R, Chen X Y. Nano, 2011, 5:3043.
[27] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Angew. Chem. Int. Ed., 2005, 44:2782.
[28] Xuan S, Wang Y X, Yu J C, Leung K C. Chem. Mater., 2009, 21:5079.
[29] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124:8204.
[30] Wang Y, Zhu Q S, Tao L. Cryst. Eng. Comm., 2011, 13:4652.
[31] Gao G H, Liu X H, Shi R R, Zhou K C, Shi Y G, Ma R Z, Muromachi E T, Qiu G Z. Cryst. Growth Des., 2010, 10:2888.
[32] Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W. Chem. Mater., 2004, 16(14):2814.
[33] Park J, Lee E, Hwang N M, Kang M, Kim S C, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hyeon T. Angew. Chem. Int. Ed. Engl., 2005, 44(19):2873.
[34] Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T. Nat. Mater., 2004, 3:891.
[35] Asuha S, Suyala B, Siqintana X, Zhao S. J. Alloys Compd., 2011, 509:2870.
[36] Jana N R, Chen Y, Peng X. Chem. Mater., 2004, 16:3931.
[37] Tang N J, Zhong W, Jiang H Y, Wu X L, Liu W, Du Y W. J. Magn. Magn. Mater., 2004, 282:92.
[38] 周洁(Zhou J), 马明(Ma M), 张宇(Zhang Y). 东南大学学报(J. Southeast Univ.), 2005, 35:616.
[39] Cui H, Liu Y, Ren W. Adv. Powder. Technol., 2013, 24:93.
[40] Xu J, Yang H B, Fu W Y, Fan W H, Liu B B, Zou G T. J. Magn. Magn. Mater., 2007, 309:307.
[41] Zhou Z H, Wang J, Liu X. Mater. Chem., 2001, 11:1704.
[42] Lu T, Wang J H, Yin J, Wang A Q, Wang, X D, Zhang T. Colloids Surf. A, 2013, 43:675.
[43] Zhang D, Tong Z, Li S, Zhang X, Ying A. Mater. Lett., 2008, 62:4053.
[44] 邱星屏(Qiu X P). 厦门大学学报(自然科学版)(J. Xiamen Univ. (Nat. Sci.)), 1993, 8:711.
[45] Morais P C, Azevedo R B, Rabelo D. Chem. Mater., 2003, 15:2485.
[46] Li Z, Sun Q, Gao M Y. Angew. Chem. Int. Ed., 2005, 44: 123.
[47] 蒋丽萍(Jiang L P), 邱建华(Qiu J H), 韦谷锡(Wei G X), 陆小朵(Lu X D). 化工新型材料(New Chem. Mater.),2015, 43:166.
[48] 崔琳(Cui L),刘臻龙(Liu Z L),郭世宇(Guo S Y). 现代电子技术(Modern Electronics Technique), 2015, 09:143.
[49] Zhu M, Diao G. Nanoscale, 2011, 3:2748.
[50] Teja A S, Koh P Y. Prog. Cryst. Growth Ch., 2009, 55:22.
[51] Horst M F, Lassalle V, Ferreira M L. Front. Environ. Sci. Eng., 2015, 9:746.
[52] Rajput S, Charles U, Pittman J, Mohan D. J. Colloid Interface Sci., 2016. 468:334.
[53] Sharma Y C, Srivastava V. J. Chem. Eng. Data, 2010, 56:819.
[54] Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Bioresourc. Technol., 2009, 100:4139.
[55] Wang T, Zhang L Y, Wang H Y, Yang W C, Fu Y C, Zhou W L, Yu W T, Xiang K S, Su Z, Dai S, Chai L Y. ACS Appl. Mater. Interfaces, 2013, 5:12449.
[56] Liu X, Hu Q, Fang Z, Zhang X, Zhang B. Langmuir, 2009, 25:3.
[57] Zhao J H, Liu J, Li N, Wang W, Nan J, Zhao Z W, Cui F Y. J. Chem. Eng., 2016, 304:737.
[58] Li S H, Liu L, Yu Y F, Wang G X, Zhang H L, Chen A B. J. Alloys Compd., 2017, 698:20.
[59] Qi Z J, Joshi T P, Liu R P, Liu H J, Qu J H. J. Hazard. Mater., 2017, 329:193.
[60] Wei S Y, Yang X H. Chin. J. Inorg. Chem., 2013. 29:2615.
[61] Song X M, Tan L C, Ma H Y, Guo Y, Zhu L, Gao J Y, Yang R J, Dong Q. Dalton Trans., 2017, 46:3347.
[62] Liu Y, Fu R Q, Sun Y, Zhou X X, Baig S A, Xu X H. Appl. Surf. Sci., 2016, 369:267.
[63] Wang Z X, Xu J, Hu Y J, Zhao H, Zhou J L, Liu Y, Lou Z, Xu X H. J. Taiwan Inst. Chem. Eng., 2016, 60, 394.
[64] Jin Y J, Liu F, Tong M P, Hou Y L. Hazard. Mater., 2012, 227:461.
[65] Peng X J, Luan Z K, Di Z C, Zhang Z G, Zhu C L. Carbon, 2005, 43:855.
[66] Min X, Yang W, Hui Y F, Gao C Y, Dang S, Sun Z M. J. Name., 2017, 53:30.
[67] Lin C C, Lin Y S, Ho J M. J. Alloys Compd., 2016, 666:153.
[68] Wu S P, Huang J C, Zhuo C H, Zhang F Y, Sheng W C, Zhu M Y. J. Inorg. Organomet. Polym., 2016, 26:632.
[69] Chaudhary G R, Saharan P, Kumar A, Mehta S K, Mor S, Umar A. J. Nanosci. Nanotechnol., 2013, 13:3240.
[70] Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J. J. Hazard. Mater., 2012, 193:209.
[71] Iram M, Guo C, Guan Y, Ishfaq A, Liu H. J. Hazard. Mater., 2010, 181:1039.
[72] Lu L, Li J, Yang P, Song P, Zuo M. J. Ind. Eng. Chem., 2017, 46:315.
[73] Abdel N M, Salem M A, Ahmed M F, Shahat E. J. Mol. Liq., 2016, 219:780.
[74] Liu J, Zhao Z W, Shao P H, Cui F Y. J. Chem. Eng., 2015, 262:854.
[75] Yang Q, Song H, Li Y, Pan Z, Dong M, Chen F, Chen Z. J. Mol. Liq., 2017, 234:18.
[76] Chang J L, Ma J C, Ma Q L, Zhang D D, Qiao N N, Hu M X, Ma H Z. Appl. Clay. Sci., 2016, 119:132.
[77] Zhu H Y, Jiang R, Li J B, Fu Y Q, Jiang S T, Yao J. Sep. Technol., 2017, 179:184.
[78] Zhang Z, Kong J. J. Hazard. Mater., 2011,193:325.
[79] Yang N, Zhu S, Zhang D, Xu S. Mater. Lett. 2008, 62:645.
[80] Kalantari M, Yu M, Noonan O, Song H, Xu H, Huang X, Xiang F, Wang X, Yu C. Chemosphere, 2017, 166:109.
[81] Madrakian T, Afkhami A, Ahmadi M, Bagheri H. J. Hazard. Mater., 2011, 196:109.
[82] Chong S, Zhang G M, Tian H F, Zhao H. J. Environ. Sci., 2016, 44:148.
[83] Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X. J. Mater. Chem., 2012, 22:3527.
[84] 张立德(Zhang L D), 牟季美(Mou J M). 纳米材料和纳米结构(Textbook of Nanomaterials and Nanostructures). 北京:科学出版社(Beijing:Science Press), 2001, 503.
[85] Niu H L, Lu J H, Song J J, Pan L, Zhang X W, Wang L, Zou J. J. Ind. Eng. Chem. Res., 2016, 55:8527.
[86] 牛文君(Niu W J), 沈亚乐(Shen Y L), 许静(Xu J), 马柳磊(Ma L L), 赵玉华(Zhao Y H), 沈明(Shen M). 无机化学学报(Chin. J. Inorg. Chem.), 2013, 29:2110.
[87] 刘淑玲(Liu S L), 许青青(Xu Q Q). 陕西科技大学学报(J. Shanxi Univ.), 2015, 2:103.
[88] Boruah P K, Sharma B, Karbhal I, Shelke M V, Das M R. J. Hazard. Mater., 2017, 325:90.
[89] Zhou L C, Shao Y M, Liu J R, Ye Z F, Zhang H, Ma J J, Jia Y, Gao W J, Li Y F. ACS Appl. Mater. Interfaces, 2014, 6:7275.
[90] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nature Nanotechnol., 2007, 2:577.
[91] Liu S, Lu F, Xing R, Zhu J J. Chem. Eur. J., 2011, 17:620.
[92] Yu C, Lin C, Liu C, Cheng T, Tseng W. Biosens. Bioelectron., 2010, 26(2):913.
[93] Tseng W, Liu C. Anal. Chim. Acta, 2011, 703(1):87.
[94] Sharma P K, Dutta S, Sharma S, Zboril R, Varma R S, Gawande M B. Green Chem., 2016, 18:3184.
[95] Karami B, Hoseini S J, Eskandari K, Ghasemi A, Nasrabadi H. Catal. Sci. Technol., 2012, 2:331.
[96] Zhang Z H, Lu H Y, Yang S H, Gao J W. J. Comb. Chem., 2010, 12:643.
[97] Pagoti S, Surana S, Chauhan A, Parasar B, Dash J. Catal. Sci. Technol., 2013, 3:584.
[98] Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R, Zhang J Z. Phys. Chem. B, 2004, 108:19191.
[99] Kuo C W, Lai J J, Wei K H, Chen P. Adv. Funct. Mater., 2007, 17:3707.
[100] Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T. Langmuir, 2004, 20:11293.
[101] Morkel M, Rupprechter G, Freund H J. J. Chem. Phys., 2003, 119:10853.
[102] Astruc D, Lu F, Aranzaes J R. Angew. Chem. Int. Ed., 2005, 44:7852.
[103] Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D. Nano Today, 2016, 11:464.
[104] Yue Q, Zhang Y, Wang C, Wang X, Sun Z, Hou X F, Zhao D, Deng Y. J. Mater. Chem. A, 2015, 3:4586.
[105] Xia Q D, Fu S S, Ren G J, Chai F, Jiang J J, Qu F Y. New J. Chem., 2016, 40:818.
[106] Wang C, Daimon H, Sun S H. Nano Letters, 2009, 9:1493.
[107] Thokchom B, Qiu P P, Cui M C, Park B, Pandit A B, Khim J. Ultrason. Sonochem., 2017, 34:262.
[108] Byun S, Song Y, Song B M. ACS Appl. Mater. Interfaces, 2016, 8:14637.
[109] Guin D, Baruwati B, Manorama S V. Org. Lett., 2007, 9:1419.
[110] Parandhaman T, Pentela N, Ramalingam B, Samanta D, Sujoy K. Sustain. Chem. Eng., 2017, 5:489.
[111] Kumar B S, Amali A J, Pitchumani K. ACS Appl. Mater. Interfaces, 2015, 7:22907.
[112] Zhu M Y, Wang C J, Meng D H, Diao G W. J. Mater. Chem. A, 2013, 1:2118.
[113] Zhu M, Diao G. J. Phys. Chem. C, 2011, 115:24743.
[114] Zhang P, Li R, Huang Y M, Chen Q W. ACS Appl. Mater. Interfaces, 2014, 6:2671.
[115] Zhou L, Gao C, Xu W J. Langmuir, 2010, 26:11217.
[116] Panella B, Vargas A, Baiker A. J. Catal., 2009, 261:88.
[117] Hu H B, Wang Z H, Pan L, Zhao S P, Zhu S Y. Phys. Chem. C, 2010, 114:7738.
[118] Zhu Y, Shen J, Zhou K, Chen C, Yang X, Li C. Phys. Chem. C, 2011, 115:1614.
[119] Ge J, Zhang Q, Zhang T, Yin Y. Angew. Chem., 2008, 120:9056.
[120] Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. J. Am. Chem. Soc., 2010, 132, 8466.
[121] Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B. ACS Appl. Mater. Interfaces, 2014, 6:8845.
[122] Liu R, Guo Y L, Odusote G, Qu F L, Priestley R D. ACS Appl. Mater. Interfaces, 2013, 5:9167.
[123] Xuan S H, Wang Y J, Yu J C, Lueng K C. Langmuir, 2009, 25:11835.
[124] 陈金媛(Chen J Y), 彭图治(Peng T Z). 化学学报(Acta. Chim. Sinica), 2004, 62:2093.
[125] Shen C H, Lo S L, Chang C Y. Adv. Mater. Res., 2009, 79:321.
[126] Choi K H, Park S Y, Park B J, Jung J S. Surf. Coat. Technol., 2017, 01:029.
[127] 任学昌(Ren X C), 马学琴(Ma X Q), 任晓亮(Ren X L), 王拯(Wang Z), 刘鹏宇(Liu Peng Y), 常青(Chang Q). 环境化学(Environ. Chem.), 2013, 11:2149.
[128] Wang J, Yang J H, Li X Y, Wang D D, Wei B, Song H, Li X F, Fu S W. Physica E, 2016, 75:66.
[129] Chidambaram S, Pari B, Kasi N, Muthusamy S. J. Alloys Compd., 2016, 665:404.
[130] Zhang S W, Fan Q H, Gao H H, Huang Y S, Liu X, Li J X, Xu X J, Wang X K. J. Mater. Chem. A, 2016, 4:1414.
[131] Zhang F, Chen M Z, Wu X T, Wang W, Li H X. J. Mater. Chem. A, 2014, 2:484.
[132] Li Q Y, Jiang S, Ji S F, Shi D, Yan J L, Huo Y X, Zhang Q M. Ind. Eng. Chem. Res., 2014, 53:14948.
[133] Hu A, Yee G T, Lin W. J. Am. Chem. Soc., 2005, 127:12486.
[134] Sadeghi O, Amini M M, Bazargani M F B, Mehrani A, Aghabali A, Adineh M, Amani V, Mehrani K. J. Inorg Organomet. Polym., 2012, 22:530.
[135] Lin T R, Wang J, Guo L Q, Fu F F. J. Phys. Chem. C, 2015, 119:13658.
[136] Li G P, Mao L Q. Adv., 2012, 2:5108.
[137] Zhu Y G, Kaskel S, Shi J, Wage T, Pée K H V. Chem. Mater., 2007, 19:6408.
[138] Poizot P, Laruelle S, Grugeon S. Nature, 2000, 407:496.
[139] Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5:567.
[140] 王新慧(Wang X H). 山西师范大学硕士论文(Master Dissertation of Shanxi Normal University), 2014.
[141] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Edit., 2008, 47:2930.
[142] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 6803:496.
[143] Xie W H, Gu L L, Sun X L, Liu M T, Li S Y, Wang Q, Liu D Q, He D Y. Electrochim. Acta. 2016, 220:107.
[144] Wang L, Zhang X X, Wang S S, Li Y H, Qian B, Jiang X F, Yang G. Powder Technol., 2014, 256:499.
[145] Zeng X J, Yang B, Li X P, Li R F, Yu R H. Mater. Design, 2016, 101:35.
[146] Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liang W. Nanoscale, 2011, 3:5034.
[147] Liu S, Guo S, Sun S, You X Z. Nanoscale, 2015, 7:4890.
[148] Yang X, Kan J, Zhang F, Zhu M, Li S. J. Inorg. Organomet. Polym., 2017, 27:542.
[149] 王小芳(Wang X F), 王惠(Wang H), 田勇(Tian Y), 董发昕(Dong F X), 史启祯(Shi Q Z), 文振翼(Wen Z Y). 化学学报(Acta Chemica Sinica), 2007, 65:601.
[150] Zhao X, Zhao H, Chen Z, Lan M. J. Nanosci. Nanotechnol., 2014, 14:210.
[151] Sanjai C, Kothan S, Gonil P, Saesoo S, Sajomsang W. Carbohyd. Polym., 2014, 104:231.
[152] Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett., 2016, 16(4):2686.
[153] 王佩(Wang P), 李玉珍(Li Y Z). 中国新药杂志(Chin. J. New Drug), 1996, 5:180.
[154] 杨晓春(Yang X C), 张强(Zhang Q), 吴霖(Wu L). 中国药学杂志(Chin. J. New Drug), 2001, 36:795.
[155] 马喜峰(Ma X F), 郭红(Guo H), 李斌(Li B). 精细与专用化学品(Fine and Specially Chemistry), 2014, 22:13.
[156] Wang Z F, Guo H S, Yu Y L. J. Magn. Mater., 2006, 302:397.
[157] Zhu X, Yuan J, Leung K C, Lee S F, Sham K W Y, Cheng C H K, Au D W T, Teng G J, Ahuja A T, Wang Y X J. Nanoscale, 2012, 4:5744.
[158] Yang C Y, Guo W, Cui L R, An N, Zhang T, Lin H M, Qu F Y. Langmuir, 2014, 30:9819.
[159] 张杰(Zhang J), 杨静(Yang J), 甄卫军(Zhen W J). 精细石油化工进展(Adv. Fine Petrochem.), 2012, 13:51.
[160] 马喜峰(Ma X F),汤春妮(Tang C N), 李斌(Li B). 化学与生物工程(Chem. Bioeng.), 2014, 31:35.
[161] 许丽君(Xu L J). 化学教育(Chin. J. Chem. Edu.), 2015, 36:33.
[162] 杨剑冰(Yang J B). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2015.
[163] Cao S L, Xu P, Ma Y Z, Yao X X, Yao Y, Zong M H, Li X H, Lou W Y. Chin. J. Catal., 2016, 37:1814.
[164] Yue Q, Li J, Luo W, Zhang Y, Elzatahry A A, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D. J. Am. Chem. Soc., 2015, 137:13282.
[165] Yue Q, Zhang Y, Jiang Y, Li J, Zhang H, Yu C, Elzatahry A, Alghamdi A, Deng Y, Zhao D. J. Am. Chem. Soc., 2017, 139:4954.
[166] Fernandez S C, Costa G A. Analytica Chimica Acta, 1999, 402:119.
[167] Liu Z M, Yang H F, Li Y F, Liu Y L, Shen J L, Yu R Q. Sens. Actuators, B-Chem., 2006, 113:956.
[168] Weidenfeller B, Hmer M, Schilling F. Composites:Part A, 2002, 33:1041.
[169] Stoyanov P, Gottschalk A, Lind D M. J. Appl. Phys., 1997, 81:5010.
[170] Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56:571.
[1] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[2] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[3] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[4] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[5] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[6] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[7] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[8] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[9] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[10] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[11] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[12] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[13] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[14] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[15] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.