中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1252-1259 DOI: 10.7536/PC170541 Previous Articles   Next Articles

• Review •

Preparation and Application of Nano-Sized Metal-Organic Frameworks

Tian Zhao*, Ming Dong, Yi Zhao, Yuejun Liu*   

  1. School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 11372108).
PDF ( 2838 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) receive great attention, due to their high porosity which promises applications in gas storage, separations, catalysis and heat transformation etc. Nano metal-organic framework materials (NMOFs) combined the bulk phase properties of the MOFs together with the additional physical/chemical properties derived from nano-sized particles, which can display improved properties. This review generally introduces the development of MOFs, several classical prototypical MOFs structures and their applications. Meanwhile, the preparation methods of some special important NMOFs and their applications are discussed. Finally, we present the trend and future prospects of novel materials based on NMOFs.
Contents
1 Introduction
2 Metal-organic frameworks
3 Preparation and application of nano metal-organic framework materials
3.1 Preparation of nano-sized classical MOFs
3.2 Applications of classical nano-MOFs
3.3 Preparation and application of other nano-MOFs
4 Conclusion

CLC Number: 

[1] Kitagawa S, Kitaura R, Noro S i. Angew. Chem. Int. Ed., 2004, 43:2334.
[2] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38:1213.
[3] Zhao T, Heering C, Boldog I, Domasevitch K V, Janiak C. CrystEngComm, 2017, 19:776.
[4] Spokoyny A M, Kim D, Sumrein A, Mirkin C A. Chem. Soc. Rev., 2009, 38:1218.
[5] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23:249.
[6] Jiang H L, Xu Q. Chem. Commun., 2011, 47:3351.
[7] Sakata Y, Furukawa S, Kondo M, Hirai K, Horike N, Takashima Y, Uehara H, Louvain N, Meilikhov M, Tsuruoka T, Isoda S, Kosaka W, Sakata O, Kitagawa S. Science, 2013, 339:193.
[8] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38:1257.
[9] Perry Iv J J, Perman J A, Zaworotko M J. Chem. Soc. Rev., 2009, 38:1400.
[10] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329:424.
[11] Farha O K, Yazayd?n A Ö, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. Nat. Chem., 2010, 2:944.
[12] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazayd?n A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134:15016.
[13] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38:1294.
[14] Zhao X, Xiao B, Fletcher A J, Thomas K M, Bradshaw D, Rosseinsky M J. Science, 2004, 306:1012.
[15] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2011, 112:724.
[16] Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, Takata M, Mizuno M, Uemura T, Kitagawa S. Nat. Mater., 2011, 10:787.
[17] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Chem. Rev., 2011, 112:1105.
[18] Achmann S, Hagen G, Kita J, Malkowsky I, Kiener C, Moos R. Sensors, 2009, 9:1574.
[19] Yamada T, Otsubo K, Makiura R, Kitagawa H. Chem. Soc. Rev., 2013, 42:6655.
[20] Taylor J M, Mah R K, Moudrakovski I L, Ratcliffe C I, Vaidhyanathan R, Shimizu G K. J. Am. Chem. Soc., 2010, 132:14055.
[21] Sadakiyo M, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2012, 134:5472.
[22] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2011, 112:1232.
[23] Rocca J D, Liu D, Lin W. Acc. Chem. Res., 2011, 44:957.
[24] Taylor-Pashow K M, Rocca J D, Xie Z, Tran S, Lin W. J. Am. Chem. Soc., 2009, 131:14261.
[25] Rocha J, Carlos L D, Paz F A A, Ananias D. Chem. Soc. Rev., 2011, 40:926.
[26] Schubert U. Chem. Soc. Rev., 2011, 40:575.
[27] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38:1248.
[28] Carné A, Carbonell C, Imaz I, Maspoch D. Chem. Soc. Rev., 2011, 40:291.
[29] Yaghi O M, Li G, Li H. Nature, 1995, 378:703.
[30] Yaghi O M, Li H. J. Am. Chem. Soc., 1995, 117:10401.
[31] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. CrystEngComm, 2012, 14:3001.
[32] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. Pure Appl. Chem., 2013, 85:1715.
[33] Janiak C. Dalton Trans., 2003, (14):2781.
[34] Férey G. J. Solid State Chem., 2000, 152:37.
[35] Surble S, Millange F, Serre C, Férey G, Walton R I. Chem. Commun., 2006, (14):1518.
[36] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M.PNAS, 2006, 103:10186.
[37] Chui S S, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283:1148.
[38] Kim M K, Jo V, Lee D W, Shim I W, Ok K M. CrystEngComm, 2010, 12:1481.
[39] Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S. Angew. Chem. Int. Ed., 2009, 48:9954.
[40] Katz M J, Brown Z J, Colón Y J, Siu P W, Scheidt K A, Snurr R Q, Hupp J T, Farha O K. Chem. Commun., 2013, 49:9449.
[41] Furukawa H, Cordova K, O'Keeffe M, Yaghi O. Science, 2013, 341:1230444.
[42] Li H, Eddaoudi M, Groy T L, O'Keeffe M, Yaghi O M. Nature, 1999, 402:276.
[43] O'Keeffe M. Chem. Soc. Rev., 2009, 38:1215.
[44] Horcajada P, Surblé S, Serre C, Hong D Y, Seo Y K, Chang J S, Grenèche J M, Margiolaki I, Férey G. Chem. Commun., 2007:2820.
[45] Gangu K, Maddila S, Mukkamala S, Jonnalagadda S. Inorg. Chim. Acta, 2016, 466:61.
[46] 胡一平(Hu Y P), 陕多亮(Shan D L), 卢小泉(Lu X Q). 高等学校化学学报(Chem. J. Chin. Univ.), 2016, 37(6):1082.
[47] Zhan G, Zeng H. Coord. Chem. Rev., 2016, 320:181.
[48] Zhang S, Yang Q, Liu X, Qu X, Wei Q, Xie G, Chen S, Gao S. Coord. Chem. Rev., 2016, 307:5107.
[49] Wang C, Liu X, Demir N, Chen J, Li K. Chem. Soc. Rev., 2016, 45, 5107.
[50] Bigdeli M, Morsali A. Ultrason. Sonochem., 2015, 27:416.
[51] Zheng Y, Liu K, Sun X, Guan R, Su H, You H, Qi C. Crystengcomm, 2016, 18(6):1078.
[52] Hermes S, Witte T, Hikov T, Zacher D, Bahnmüller S, Langstein G, Huber K, Fischer R. J. Am. Chem. Soc., 2007, 129:5324.
[53] Lai D, Li D, Wang J, Yang J. Plast. Rubber Compos., 2015, 44(9):376.
[54] Lykourinou V, Chen Y, Wang X, Meng L, Hoang T, Ming L, Musselman R, Ma S. J. Am. Chem. Soc., 2011, 133:10382.
[55] Kreno L, Hupp J, Van Duyne R. Anal. Chem., 2010, 82:8042.
[56] Yang S, Choi J, Chae H, Cho J, Nahm K, Park C. Chem. Mater., 2009, 21:1893.
[57] Na L, Hua R, Ning G, Ou X. Chem. Res. Chinese U, 2012, 28(4):555.
[58] Wee L H, Lohe M R, Janssens N, Kaskel S, Martens J A. J. Mater. Chem., 2012, 22:13742.
[59] Xin C, Zhan H, Huang X, Li H, Zhao N, Xiao F, Wei W, Sun Y. RSC Adv., 2015, 5:27901.
[60] Liu Q, Yang J, Jin L, Sun W. CrystEngComm, 2016, 22:4127.
[61] Xin Z, Bai J, Pan Y, Zaworotko M J. Chem.-Eur. J., 2010, 16:13049.
[62] Ma M, Zacher D, Zhang X, Fischer R A, Metzler-Nolte N. Cryst. Growth Des., 2011, 11:185.
[63] Yang J, Liu Q, Sun W. J. Solid State Chem., 2014, 218:50.
[64] Yang J, Liu Q, Sun W. Microporous Mesoporous Mater., 2014, 190:26.
[65] Serre C, Millange F, Surble S, Férey G. Angew. Chem. Int. Ed., 2004, 43:6285.
[66] Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louer D, Férey G. J. Am. Chem. Soc., 2002, 124:13519.
[67] Millange F, Guillou N, Walton R I, Greneche J M, Margiolaki I, Férey G. Chem. Commun., 2008:4732.
[68] Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Férey G, Stock N. Inorg. Chem., 2008, 47:7568.
[69] Zhang F, Zou X, Sun F, Ren H, Jiang Y, Zhu G. CrystEngComm, 2012, 14(17):5487.
[70] Chin J M, Chen E Y, Menon A G, Tan H Y, Hor A T S, Schreyer M K, Xu J. CrystEngComm, 2013, 15:654.
[71] Akhbari K, Morsali A. Mater. Lett., 2015, 141:315.
[72] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309(5743):2040.
[73] Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger S, Janiak C. Dalton Trans., 2015, 44:16791.
[74] Khan N A, Kang I J, Seok H Y, Jhung S H. Chem. Eng. J., 2011, 166:1152.
[75] Jhung S H, Lee J H, Yoon J W, Serre C, Férey G, Chang J S. Adv. Mater., 2007, 19:121.
[76] Jiang D, Burrows A D, Edler K J. CrystEngComm, 2011, 13:6916.
[77] Zhao P, Cao N, Luo W, Cheng G. J. Mater. Chem. A, 2015, 3:12468.
[78] Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130:13850.
[79] Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem. -Eur. J., 2011, 17:6643.
[80] Tai S, Zhang W, Zhang J, Luo G, Jia Y, Deng M, Ling Y. Microporous Mesoporous Mater., 2016, 220:148.
[81] Trinh D X, Tran T P N, Taniike T. Sep. Purif. Technol., 2017, 117:249.
[82] Huang X C, Lin Y Y, Zhang J P, Chen X M. Angew. Chem. Int. Ed., 2006, 45:1557.
[83] Tsai C-W, Langner E H G. Microporous Mesoporous Mater., 2016, 221:8.
[84] Sun W, Zhai X, Zhao L. Chem. Eng. J., 2016, 289:59.
[85] Rafiee E, Nobakht N. Acta Chim. Slov., 2016, 63:309.
[86] Vu T V, Kosslick H, Schulz A, Harloff J, Paetzold E, Lund H, Kragl U, Schneider M, Fulda G. Microporous Mesoporous Mater., 2012, 154:100.
[87] Cheng S, Shang N, Feng C, Gao S, Wang C, Wang Z. Catal. Commun., 2017, 89:91.
[88] Kim S N, Yang S T, Kim J, Park J E, Ahn W S. CrystEngComm, 2012, 14:4142.
[89] Wen M, Mori K, Kamegawa T, Yamashita H. Chem. Commun., 2014, 50:11645.
[90] Wu F, Qiu L G, Ke F, Jiang X. Inorg. Chem. Commun., 2013, 32:5.
[91] Saikia M, Bhuyan D, Saikia L. New J. Chem., 2015, 39:64.
[92] Tu J, Zeng X, Xu F, Wu X, Tian Y, Houa X, Long Z. Chem. Commun., 2017, 53:3361.
[93] Zhang Y, Dai T, Zhang F, Zhang J, Chu G, Quan C. Chin. J. Catal., 2016, 37:2106.
[94] Wang Y, Hou C, Zhang Y, He F, Liu M, Li X. J. Mater. Chem. B, 2016, 4:3695.
[95] Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H. J. Power Sources, 2016, 303:379.
[96] Li P, Zeng H C. ACS Appl. Mater. Interfaces, 2016, 8(43):29551.
[97] Gu Z, Chen S, Fu W, Zheng Q, Zhang J. ACS Appl. Mater. Interfaces, 2017, 9(8):7259.
[98] Tanh Jeazet H B, Staudt C, Janiak C. Chem. Commun., 2012, 48:2140.
[99] Tanh Jeazet H B, Koschine T, Staudt C, Raetzke K, Janiak C. Membranes, 2013, 3:331.
[100] Basu S, Balakrishnan M. Sep. Purif. Technol., 2017, 179:118.
[101] Lai L S, Yeong Y F, Lau K K, Shariff A M. J. Chem. Technol. Biotechnol., 2017, 92:420.
[102] Dou R, Zhang J, Chen Y, Feng S. Environ. Sci. Pollut. Res., 2017, 24:8778.
[103] Taheri A, Babakhani E, Towfighi J. J. Nat. Gas Sci. Eng., 2017, 38:272.
[104] Kim S I, Yoon T U, Kim M B, Lee S J, Hwang Y K, Chang J S, Kim H J,Lee H N, Lee U H, Bae Y S. Chem. Eng. J., 2016, 286:467.
[105] Ma J, Guo X, Ying Y, Liu D, Zhong C. Chem. Eng. J., 2017, 313:890.
[106] Lashkari E, Wang H, Liu L, Li J, Yam K. Food Chem., 2017, 221:926.
[107] Li Y, Li X, Guan Q, Zhang C, Xu T, Dong Y, Bai X, Zhang W. Int. J. Nanomed., 2017, 12:1465.
[108] Wuttke S, Braig S, Preiß T, Zimpel A, Sicklinger J, Bellomo C, Rädler J O, Vollmar A M, Bein T. Chem. Commun., 2015, 51:15752.
[109] Xia W, Zhu J, Guo W, An L, Xia D, Zou R. J. Mater. Chem. A, 2014, 2:11606.
[110] Lá?nez J, Zornoza B, Mayoral Á, Berenguer-Murcia Á, Cazorla-Amorós D, Télleza C, Coronas J. J. Mater. Chem. A, 2015, 3:6549.
[111] Li P, Klet R C, Moon S Y, Wang T C, Deria P, Peters A W, Klahr B M, Park H J, Al-Juaid S S, Hupp J T, Farha O K. Chem. Commun., 2015, 51:10925.
[112] Ge D, Peng J, Qu G, Geng H, Deng Y, Wu Junjie, Cao X, Zheng J, Gu H. New J. Chem., 2016, 40:9238.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[7] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[8] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[9] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[10] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[11] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[12] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[13] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[14] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[15] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.