中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1331-1350 DOI: 10.7536/PC170536 Previous Articles   Next Articles

• Review •

The Research in Cycloaddition Reactions of Allenic Compounds

Xiaolei Gong, Wenchao Gao, Honghong Chang, Wenlong Wei*, Xing Li*   

  1. Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Shanxi Province (No. 201601D011028, 20130110094).
PDF ( 2636 ) Cited
Export

EndNote

Ris

BibTeX

Allene is a kind of compounds containing 1, 2-propadiene structure. In recent years, allenes and their derivatives have attracted many researchers' interest due to the unique nature. A variety of unsaturated compounds can react with allenes or their derivatives in a variety of cycloaddition reactions to prepare indole, pyridine, furan and other cyclic compounds. The recent progress in the cycloaddition reactions of allenic compounds catalyzed by different catalysts is summarized, including [4+2], [3+2], [2+2], [1+2+2], [2+2+2], [4+3], and [4+2+2] cycloaddition reactions, and the future development of allenic compounds is prospected.
Contents
1 Introduction
2[4+2] cycloaddition of allenes
2.1[4+2] cycloadditions of allenes with unsaturated ketones
2.2[4+2] cycloadditions of allenes with butadienes
2.3[4+2] cycloadditions of allenes with alkynes
2.4[4+2] cycloadditions of allenes with alkenes
2.5[4+2] cycloadditions of allenes with hydroxylamines
3[3+2] cycloaddition of allenes
3.1[3+2] cycloadditions of allenes with imines
3.2[3+2] cycloadditions of allenes with ketones
3.3[3+2] cycloadditions of allenes with alcohols
3.4[3+2] cycloadditions of allenes with butadienes
3.5[3+2] cycloadditions of allenes with aziridines
3.6[3+2] cycloadditions of allenes with alkenes
4[2+2] cycloaddition of allenes
4.1[2+2] cycloadditions of allenes with allenes
4.2[2+2] cycloadditions of allenes with alkenes
5[1+2+2] cycloaddition of allenes
6[2+2+2] cycloaddition of allenes
6.1[2+2+2] cycloadditions of allenes with alkynyl and cyanogens
6.2[2+2+2] cycloadditions of allenes with alkenyls
6.3[2+2+2] cycloadditions of allenes with isocyanates
6.4[2+2+2] cycloadditions of allenes with triazines
7[4+3] cycloaddition of allenes
8[4+2+2] cycloaddition of allenes
9 Conclusion

CLC Number: 

[1] Pan F, Fu C L, Ma S M. Chin. J. Org. Chem., 2004, 24:1168.
[2] Xu S H, Wang H, Zang G X, Zheng W H, Du Y J, Wang S Y. Chin. J. Org. Chem., 2009, 29:1474.
[3] Lledó A, Pla-Quintana A, Roglans A. Chem. Soc. Rev., 2016, 45:2010.
[4] Xiong H L, Wang H, He L J, Zhang Y H, Zeng Z. Chin. J. Org. Chem., 2011, 4:466.
[5] Burton B S, Pechman H V. Chem. Ber., 1887, 20:145.
[6] Staudinger H, Ruzika L. Helv. Chim. Acta, 1924, 7:177.
[7] Clemer W D, Solomans I A. J. Am. Chem. Soc., 1952, 74:1870.
[8] Sako S, Kurahashi T, Matsubara S. Chem. Commun., 2011, 47:6150.
[9] Wang X J, Fang T, Tong X F. Angew. Chem. Int. Ed., 2011, 50:5361.
[10] Pei C K, Jiang Y, Shi M. Org. Biomol. Chem., 2012, 10:4355.
[11] Zhang D H, Shi M. ChemistryOpen, 2012, 1:215.
[12] Pei C K, Wu L, Lian Z, Shi M. Org. Biomol. Chem., 2012, 10:171.
[13] Zhang S, Luo Y C, Hu X Q, Wang Z Y, Liang Y M, Xu P F. J. Org. Chem., 2015, 80:7288.
[14] Danda A, Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Org. Lett., 2016, 18:2632.
[15] Wang C, Gao Z Z, Zhou L J, Yuan C H, Sun Z H, Xiao Y M, Guo H C. Org. Lett., 2016, 18:3418.
[16] Wang L, Lv J, Zhang L, Luo S Z. Angew. Chem. Int. Ed., 2017, 56:10867.
[17] Singh L, Elango M, Subramanian V, Gupta V, Kanwal P. J. Org. Chem., 2008, 73:2224.
[18] Hussain I, Yawer M A, Appel B, Sher M, Mahal A, Villinger A, Fischer C, Langer P. Tetrahedron, 2008, 64:8003.
[19] Mauleon P, Zeldin R M, Gonzalez A Z, Toste F D. J. Am. Chem. Soc., 2009, 131:6348.
[20] González A Z, Toste F D. Org. Lett., 2010, 12:200.
[21] Gulías M, López F, Mascareñas J L. Pure Appl. Chem., 2011, 83:495.
[22] Wang Z, Xu H C, Su Q, Hu P, Shao P L, He Y, Lu Y X. Org. Lett., 2017, 19:3111.
[23] Jiang X F, Kong W Q, Chen J, Ma S M. Org. Biomol. Chem., 2008, 6:3606.
[24] Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun., 2013, 49:3594.
[25] Conner M L, Brown M K. Tetrahedron, 2016, 72:3759.
[26] Chen J M, Chang C J, Ke Y J, Liu R S. J. Org. Chem., 2014, 79:4306.
[27] Zhu X F, Henry C, Kwon E O. Tetrahedron, 2005, 61:6276.
[28] Fang Y Q, Jacobsen E N. J. Am. Chem. Soc., 2008, 130:5660.
[29] Zhang B, He Z R, Xu S L, Wu G P, He Z J. Tetrahedron, 2008, 64:9471.
[30] Zhao Q Y, Han X Y, Wei Y, Shi M, Lu Y X. Chem. Commun., 2012, 48:970.
[31] Clavijo E M, Carmona A T, Reissig H U, Moreno-Vargas A J, Alvarez E, Robina I. Org. Lett., 2009, 11:4778.
[32] Cai S T, Gorityala B K, Ma J M, Leow M L, Liu X W. Org. Lett., 2011, 13:1072.
[33] Tran D N, Cramer N. Angew. Chem. Int. Ed., 2013, 52:10630.
[34] Zhou W, Li X X, Li G H, Wu Y, Chen Z. Chem. Commun., 2013, 49:3552.
[35] Wilson J E, Fu G C. Angew. Chem. Int. Ed., 2006, 45:1426.
[36] Wallace D J, Sidda R L, Reamer R A. J. Org. Chem., 2007, 72:1051.
[37] Han X Y, Wang Y Q, Zhong F G, Lu Y X. J. Am. Chem. Soc., 2011, 133:1726.
[38] Chang H T, Jayanth T T, Cheng C H. J. Am. Chem. Soc., 2007, 129:4166.
[39] Li J L, Yang X J, Jiang M, Liu J T. Tetrahedron Letters, 2017, 58:3377.
[40] Tata R R, Harmata M. Org. Lett., 2016, 18:5684.
[41] López E, Lonzi G, Gonzáleza J, López L A. Chem. Commun., 2016, 52:9398.
[42] Lin T Y, Zhu C Z, Zhang P C, Wang Y D, Wu H H, Feng J J, Zhang J L. Angew. Chem. Int. Ed., 2016, 55:10844.
[43] Barluenga J, Vicente R, Barrio P, López L A, Tomás M. J. Am. Chem. Soc., 2004, 126:5974.
[44] Pinto N, Neel M, Panossian A, Retaileau P, Frison G, Voituriez A, Marinetti A. Chem. -Eur. J., 2010, 16:1033.
[45] Steurer M, Jensen K L, Worgull D, Jørgensen K A. Chem. -Eur. J., 2012, 18:76.
[46] Lee S Y, Fu Y J, Nishiguchi A, Kalek M, Fu G C. J. Am. Chem. Soc., 2015, 137:4587.
[47] Chen B, Fan W, Chai G B, Ma S M. Org. Lett., 2012, 14:3616.
[48] Mei L Y, Wei Y, Tang X Y, Shi M. J. Am. Chem. Soc., 2015, 137:8131.
[49] Zheng W F, Bora P P, Sun G J, Kang Q. Org. Lett., 2016, 18:3694.
[50] Chen K, Sun R, Xu Q, Wei Y, Shi M. Org. Biomol. Chem., 2013, 11:3949.
[51] Nada T, Yoneshige Y, Ii Y, Matsumoto T, Fujioka H, Shuto S, Arisawa M. ACS Catal., 2016, 6:3168.
[52] Inagaki F, Narita S, Hasegawa T, Kitagaki S, Mukai C. Angew. Chem. Int. Ed., 2009, 48:2007.
[53] Croatt M P, Wender P A. Eur. J. Org. Chem., 2010, 2010:19.
[54] Shafawati M T S, Inagaki F, Kawamura T, Mukai C. Tetrahedron, 2013, 69:1509.
[55] Iwata T, Inagaki F, Mukai C. Angew. Chem. Int. Ed., 2013, 52:11138.
[56] Mukai C, Takahashi Y, Ogawa K, Hayashi Y, Inagaki F. Chem. Pharm. Bull., 2014, 62:84.
[57] Haraburda E, Lledo A, Roglans A, Pla-Quintana A. Org. Lett., 2015, 17:2882.
[58] Brusoe A T, Alexanian E J. Angew. Chem. Int. Ed., 2011, 50:6596.
[59] Miura T, Morimoto M, Murakami M. J. Am. Chem. Soc., 2010, 132:15836.
[60] Ohta Y, Yasuda S, Yokogawa Y, Kurokawa K, Mukai C. Angew. Chem. Int. Ed., 2015, 54:1240.
[61] Haraburda E, Torres S, Parella T, Sol M, Pla-Quintana A. Chem. -Eur. J., 2014, 20:5034.
[62] Peng S Y, Cao S Y, Sun J T. Org. Lett., 2017, 19:524.
[63] Alonso I, Faustino H, López F, Mascareñas J L. Angew. Chem. Int. Ed., 2011, 50:11496.
[64] Lainhart B C, Alexanian E J. Org. Lett., 2015, 17:1284.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.