中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1072-1081 DOI: 10.7536/PC170526 Previous Articles   Next Articles

• Review •

The Interaction Between Nano Zero-Valent Iron and Soil Components and Its Environmental Implication

Yanlong Wang, Daohui Lin*   

  1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Research and Development Program of China (No. 2017YFA0207003), the National Natural Science Foundation of China (No. 21621005, 21525728) and the State Key Development Program for Basic Research of China (973)(No. 2014CB441104).
PDF ( 2162 ) Cited
Export

EndNote

Ris

BibTeX

Nano zero-valent iron (nZVI), possessing excellent reductive activity and adsorption performance, has been and will be widely applied in the remediation of contaminated soil and groundwater. However, superior reactive nZVI can also interact with soil components, which may not only affect soil properties and its ecological functions but also impact on the existing form and remediation function of nZVI.Interactions between nZVI and soil air, pore water, clay minerals, organic matter, and microorganism are addressed, and the influences on the soil composition and property and on the transformation and function of nZVI are discussed. Under the influence of soil components, nZVI may be transformed to various iron-based chemicals, such as Fe3O4, γ-Fe2O3, α-Fe2O3, α-FeOOH, and γ-FeOOH. Meanwhile, nZVI and its derivates would affect the soil environment by altering soil air composition, pore water pH, and/or physicochemical properties of soil clay minerals and organic matter. Furthermore, nZVI can also affect the soil microbial community, facilitating or inhibiting microbial growth and reproduction. The microbe initiating transformation can regulate the remediation function and fate of nZVI in the soil environment. At the end of the text, future research directions are put forward. This review is believed to boost scientific research and technology advance in environmental applications of nZVI.
Contents
1 Introduction
2 Interaction between nZVI and soil air and its environmental implication
2.1 Interaction between soil air and nZVI and its effect on the transformation and function of nZVI
2.2 Effects of nZVI on soil air and its environmental implication
3 Interaction between nZVI and soil pore water and its environmental implication
3.1 Interaction between soil pore water and nZVI and its effect on the transformation and function of nZVI
3.2 Environmental behavior of nZVI in soil pore water
3.3 Effects of nZVI on soil pore water and its environmental implication
4 Interaction between nZVI and clay minerals and its environmental implication
4.1 Interaction between clay minerals and nZVI and its effect on the transformation and function of nZVI
4.2 Effects of nZVI on clay minerals and its environmental implication
5 Interaction between nZVI and soil organic matter and its environmental implication
5.1 Interaction between soil organic matter and nZVI and its effect on the transformation and function of nZVI
5.2 Effects of nZVI on soil organic matter and its environmental implication
6 Interaction between nZVI and soil microorganisms and its environmental implication
6.1 Toxicity mechanisms of nZVI to soil microorganisms
6.2 Effects of nZVI on soil microbial community structure
6.3 Interaction between soil microorganisms and nZVI and its potential impact
7 Conclusion

CLC Number: 

[1] Zhang W X. J. Nanopart. Res., 2003, 5:323.
[2] Liu Y, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39:1338.
[3] Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50:7290.
[4] Sheng G D, Yang P J, Tang Y N, Hu Q Y, Li H, Ren X M, Hu B W, Wang X K, Huang Y Y. Appl. Catal. B, 2016, 193:189.
[5] Song H, Carraway E R. Environ. Sci. Technol., 2005, 39:6237.
[6] Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q. J. Hazard. Mater., 2013, 262:649.
[7] Xin Z, Lin Y M, Shan X Q, Chen Z L. Chemical Engineering Journal, 2010, 158:566.
[8] Shih Y H, Hsu C Y, Su Y F. Sep. Purif. Technol., 2011, 76:268.
[9] Machado S, Stawiński W, Slonina P, Pinto A R, Grosso J P, Nouws H P A, Albergaria J T, Delerue-Matos C. Sci. Total Environ., 2013, 461:323.
[10] Lundin L, MoltóJ, Fullana A. Chemosphere, 2013, 91:740.
[11] Karn B, Otto M. Ciencia & Saude Coletiva, 2011, 16:165.
[12] Yan W, Lien H L, Koel B E, Zhang W X. Environ. Sci. Processes Impacts, 2013, 15:63.
[13] Mueller N C, Braun J, Bruns J, ? erník M, Rissing P, Rickerby D, Nowack B. Environ. Sci. Pollut. Res. Int., 2012, 19:550.
[14] Abdala D B, Northrup P A, Arai Y, Sparks D L. J. Colloid Interface Sci., 2015, 437:297.
[15] Zhou D, Jin S, Wang Y, Wang P, Weng N, Wang Y. Soil Sediment Contam., 2012, 21:101.
[16] Dong H, Zhao F, Zeng G, Tang L, Fan C, Zhang L, Zeng Y, He Q, Xie Y, Wu Y. J. Hazard. Mater., 2016, 312:234.
[17] Kim H S, Ahn J Y, Hwang K Y, Kim I K, Hwang I. Environ. Sci. Technol., 2010, 44:1760.
[18] Cabot A, Puntes V F, Shevchenko E, Yin Y, Balcells L, Marcus M A, Hughes S M, Alivisatos A P. J. Am. Chem. Soc., 2007, 129:10358.
[19] Wang Q, Lee S, Choi H. J. Phys. Chem. C, 2010, 114:2027.
[20] Carpenter A W, Laughton S N, Wiesner M R. Environ. Eng. Sci., 2015, 32:647.
[21] Hu Y, Hao X, Zhao D, Fu K. Chemosphere, 2015, 140:34.
[22] Su C, Puls R W, Krug T A, Watling M T, O'Hara S K, Quinn J W, Ruiz N E. Water Res., 2013, 47:4095.
[23] Su L, Shi X, Guo G, Zhao A, Zhao Y. J. Mater. Cycles Waste Manage., 2013, 15:461.
[24] Jiang D, Hu X, Wang R, Yin D. Chemosphere, 2015, 122:8.
[25] Kim H S, Kim T, Ahn J Y, Hwang K Y, Park J Y, Lim T T, Hwang I. Biochem. Eng. J., 2012, 197:16.
[26] Liu A, Liu J, Zhang W X. Chemosphere, 2015, 119:1068.
[27] He D, Ma J, Collins R N, Waite T D. Environ. Sci. Technol., 2016, 50:3820.
[28] Kumar N, Auffan M, Gattacceca J, Rose J, Olivi L, Borschneck D, Kvapil P, Jublot M, Kaifas D, Malleret L. Environ. Sci. Technol., 2014, 48:13888.
[29] Kanel S R, Manning B, Charlet L, Choi H. Environ. Sci. Technol., 2005, 39:1291.
[30] Kuang W, Han E H, Wu X, Rao J. Corros. Sci., 2010, 52:3654.
[31] Shin E J, Miser D E, Chan W G, Hajaligol M R. Appl. Catal. B, 2005, 61:79.
[32] Reinsch B C, Forsberg B, Penn R L, Kim C S, Lowry G V. Environ. Sci. Technol., 2010, 44:3455.
[33] Liu Y, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41:7881.
[34] Xie Y, Cwiertny D M. Environ. Sci. Technol., 2012, 46:8365.
[35] Phillips D H, Watson D B, Roh Y, Gu B. J. Environ. Qual., 2003, 32:2033
[36] Cantrell K J, Kaplan D I, Wietsma T W. J. Hazard. Mater., 1995, 42:201.
[37] Blowes D W, Ptacek C J, Jambor J L. Environ. Sci. Technol., 1997, 31:3348.
[38] Huber D L. Small, 2005, 36:482.
[39] Glasauer S, Friedl J, Schwertmann U. J. Colloid Interface Sci., 1999, 216:106.
[40] O'Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M. Environ. Sci. Technol., 2010, 44:4570.
[41] Yan W, Ramos M A, Koel B E, Zhang W X. Chem. Commun., 2010, 46:6995.
[42] Saleh N, Kim H J, Phenrat T, Matyjaszewski K, Tilton R D, Lowry G V. Environ. Sci. Technol., 2008, 42:3349.
[43] He F, Zhao D. Appl. Catal. B, 2008, 84:533.
[44] Citeau L, Gaboriaud F, Elsass F, Thomas F, Lamy I. Colloids Surf. A, 2006, 287:94.
[45] Baalousha M. Sci. Total Environ., 2009, 407:2093.
[46] Giasuddin A B M, Kanel S R, Choi H. Environ. Sci. Technol., 2007, 41:2022.
[47] Yang K, Lin D, Xing B. Langmuir, 2009, 25:3571.
[48] Lowry G V, Gregory K B, Apte S C, Lead J R. Environ. Sci. Technol., 2012, 46:6893.
[49] Zhang Y, Chen Y, Westerhoff P, Crittenden J. Water Res., 2009, 43:4249.
[50] Peralta-Videa J R, Zhao L, Lopez-Moreno M L, de la Rosa G, Hong J, Gardea-Torresdey J L. J. Hazard. Mater., 2013, 186:1.
[51] Cornelis G, Pang L, Doolette C, Kirby J K, Mclaughlin M J. Sci. Total Environ., 2013, 463:120.
[52] Cornelis G, Thomas D M, Mclaughlin M J, Kirby J K, Beak D G, Chittleborough D. Soil Sci. Soc. Am. J., 2012, 76:891.
[53] Shoultswilson W A, Zhurbich O I, Mcnear D H, Tsyusko O V, Bertsch P M, Unrine J M. Ecotoxicology, 2011, 20:385.
[54] Bae S, Hanna K. Environ. Sci. Technol., 2015, 49:10536.
[55] Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C. Sep. Purif. Technol., 2015, 146:227.
[56] Rodrigues S, Trindade T, Duarte A, Pereira E, Koopmans G, Römkens P. Trends Anal. Chem., 2016, 75:129.
[57] Alkan M, Demirba? Ö, Do Dg? an M. Micropor. Mesopor. Mater., 2005, 83:51.
[58] Gil-Díaz M M, Pérez-Sanz A, Vicente M Á, Lobo M C. Clean-Soil, Air, Water, 2014, 42:1776.
[59] Zhang M Y, Yu W, Zhao D Y, Gang P. Chin. Sci. Bull., 2010, 55:365.
[60] Pankhurst C E, Yu S, Hawke B G, Harch B D. Biol. Fert. Soils, 2001, 33:204.
[61] Turner B L, Haygarth P M. Sci. Total Environ., 2005, 344:27.
[62] Merrington G, Oliver I, Smernik R J, Mclaughlin M J. Adv. Environ. Res., 2003, 8:21.
[63] Angove M J, Johnson B B, Wells J D. Colloids Surf. A, 1997, 126:137.
[64] Gu X, Evans L J. Geochim. Cosmochim. Acta, 2008, 72:267.
[65] Cruzguzmán M, Celis R, Hermosín M, Koskinen W, Nater E, Cornejo J. Soil Sci. Soc. Am. J., 2006, 70:215.
[66] Joo J C, Shackelford C D, Reardon K F. J. Colloid Interface Sci., 2008, 317:424.
[67] Tufenkji N, Elimelech M. Langmuir, 2005, 21:841.
[68] Kim H J, Phenrat T, Tilton R D, Lowry G V. J. Colloid Interface Sci., 2012, 370:1.
[69] Hou T, Xu R, Tiwari D, Zhao A. J. Colloid Interface Sci., 2007, 310:670.
[70] Jia H, Gu C, Boyd S A, Teppen B J, Johnston C T, Song C, Li H. Soil Sci. Soc. Am. J., 2011, 75:357.
[71] Fang M D, Yuan P, Chen T H, He H P, Yuan A H, Chen K M. Chin. Sci. Bull., 2010, 55:1092.
[72] Pang Z, Yan M, Jia X, Wang Z, Chen J. Acta Scientiae Circumstantiae, 2014, 26:483.
[73] Hendershot W H, Lavkulich L M. Soil Sci. Soc. Am. J., 1983, 47:1252.
[74] Sakurai K, Teshima A, Kyuma K. Soil Sci. Plant Nutr., 1990, 36:73.
[75] Zhuang J, Yu G R. Chemosphere, 2002, 49:619.
[76] Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu J, Chen T. J. Hazard. Mater., 2009, 166:821.
[77] Duiker S W, Rhoton F E, Torrent J, Smeck N E, Lal R. Soil Sci. Soc. Am. J., 2003, 67:606.
[78] Arias M. Clays Clay Miner., 1995, 43:406.
[79] Nawara K, Romiszewski J, Kijewska K, Szczytko J, Twardowski A, Mazur M, Krysinski P. J. Phys. Chem. C, 2012, 116:5598.
[80] Ng C W W, Coo J L. Can. Geotech. J., 2014, 52:387.
[81] Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B. Chemosphere, 2013, 90:640.
[82] Elliott D W, Zhang W X. Environ. Sci. Technol., 2002, 35:4922.
[83] Tratnyek P G, Scherer M M, Deng B, Hu S. Water Res., 2001, 35:4435.
[84] Xie L, Shang C. Environ. Sci. Technol., 2005, 39:1092.
[85] Wang F F, Wu Y, Gao Y, Li H, Chen Z. Sep. Purif. Technol., 2016, 170:337.
[86] Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y. Environ. Pollut., 2016, 211:363.
[87] Dries J, Bastiaens L, Springael D, Kuypers S, Agathos S N, Diels L. Water Res., 2005, 39:3531.
[88] Rao P H, Mak M S H, Liu T Z, Lai K C K, Lo I M C. Chemosphere, 2009, 75:156.
[89] Liu T, Rao P, Lo I M. Sci. Total Environ., 2009, 407:3407.
[90] Liu T, Tsang D C W, Lo I M C. Environ. Sci. Technol., 2013, 42:2092.
[91] Deb S K, Shukla M K. J. Anal. Toxicol., 2011, 1:106.
[92] 王学(Wang X),李勇超(Li Y C), 李铁龙(Li T L),金朝晖(Jin C H). 生态毒理学报(Asian Journal of Ecotoxicology), 2012, 7:49.
[93] Diao M H, Yao M S. Water Res., 2009, 43:5243.
[94] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17:372.
[95] El-Temsah Y S, Joner E J. Chemosphere, 2012, 89:76.
[96] Keenan C R, Gothgoldstein R, Lucas D, Sedlak D L. Environ. Sci. Technol., 2009, 3:4555.
[97] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42:1262.
[98] Joo S H, Feitz A J, Sedlak D L, Waite T D. Environ. Sci. Technol., 2005, 39:1263.
[99] Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano, 2008, 2:85.
[100] Singh N, Manshian B, Jenkins G J, Griffiths S M, Williams P M, Maffeis T G, Wright C J, Doak S H. Biomaterials, 2009, 30:3891.
[101] Kadar E, Tarran G A, Jha A N, Al-Subiai S N. Environ. Sci. Technol., 2011, 45:3245.
[102] Tilston E L, Collins C D, Mitchell G R, Princivalle J, Shaw L J. Environ. Pollut., 2013, 173:38.
[103] Fajardo C, Ortíz L T, Rodríguez-Membibre M L, Nande M, Lobo M C, Martin M. Chemosphere, 2012, 86:802.
[104] Saccàet M L, Fajardo C, Costa G, Lobo C, Nande M, Martin M. Chemosphere, 2014, 104:184.
[105] Pawlett M, Ritz K, Dorey R A, Rocks S, Ramsden J, Harris J A. Environ. Sci. Pollut. Res. Int., 2013, 20:1041.
[106] SaccàM L, Fajardo C, Nande M, Martín M. Microb. Ecol., 2013, 66:806.
[107] Něme D? ek J, Lhotsk Dý O, Cajthaml T. Sci. Total Environ., 2014, 486:739.
[108] Shin K H, Cha D K. Chemosphere, 2008, 72:257.
[109] Jeffrey R, Melchers R E. Corros. Sci., 2003, 45:693.
[110] Emerson D, Weiss J V. Geomicrobiol. J., 2004, 21:405.
[111] Lovley D R, Coates J D. Curr. Opin. Microbiol., 2000, 3:252.
[1] Qiu Xinhong Fang Zhanqiang. Degradation of Halogenated Organic Compounds by Modified Nano Zero-valent Iron [J]. Progress in Chemistry, 2010, 22(0203): 291-297.
[2] . The Problem on Photophysics and Photochemistry of Organic Compounds Possessing Ability of Fluorescence Emission [J]. Progress in Chemistry, 2005, 17(01): 15-39.