中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1021-1029 DOI: 10.7536/PC170522 Previous Articles   Next Articles

• Review •

Environmental Transformation of Engineered Carbon Nanomaterials and Its Implications

Xuguang Li, Tingting Du, Jin Liu, Xinlei Liu, Pengkun Ma, Yu Qi, Wei Chen*   

  1. Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Ministry of Science and Technology of China (No. 2014CB932001), the National Natural Science Foundation of China (No.21237002) and the National Science Fund for Distinguished Young Scholars (No. 21425729).
PDF ( 976 ) Cited
Export

EndNote

Ris

BibTeX

Engineered carbon nanomaterials have shown great promise in many applications. With the rapid increase in the production and use of these materials, their environmental behaviors and implications have received much attention. Carbon nanomaterials can undergo significant physical, chemical and biological transformation in the environment, resulting in remarkable changes in their surface charge, hydrophobicity and surface functionality. Environmental transformation of carbon nanomaterials can significantly affect their colloidal stability, transport and toxicity, as well as their capabilities to accumulate/mobilize environmental contaminants and to catalyze environmentally relevant reactions. Thus, environmental transformation largely dictates the environmental behaviors and implications of carbon nanomaterials. This paper summarizes the recent key research findings in the area, with an emphasis on the underlying mechanisms and structure-effect correlations.
Contents
1 Introduction
2 Transformation of engineered carbon nanomaterials
2.1 Physical transformation of carbon nanomaterials
2.2 Chemical transformation of carbon nanomaterials
2.3 Biological transformation of carbon nanomaterials
3 Effects of environmental transformation on environmental processes and implications of carbon nanomaterials
3.1 Environmental transformation affects transport of carbon nanomaterials
3.2 Environmental transformation affects capability of carbon nanoparticles to accumulate and mobilize contaminants
3.3 Environmental transformation affects catalytic efficiency of carbon nanomaterials
4 Conclusion

CLC Number: 

[1] Lowry G V, Gregory K B, Apte S C, Lead J R. Environ. Sci. Technol., 2012, 46(13):6893.
[2] Berber S, Kwon Y K, Tomanek D. Phys. Rev. Lett., 2000, 84(20):4613.
[3] Bonard J M, Stöckli T, Maier F, De Heer W A, Châtelain A, Salvetat J P, Forró L. Phys. Rev. Lett., 1998, 81(7):1441.
[4] Fernandez F A, Manchanda R, Mcgoron A J. Appl. Biochem. Biotech., 2011, 165(7):1628.
[5] Yang K, Xing B. Cheminform, 2010, 41(50):5989.
[6] Lu X, Yim W L, Suryanto B H, Zhao C. J. Am. Chem. Soc., 2015, 137(8):2901.
[7] Ghaffarzadeh K. Graphene, 2D Materials and Carbon Nanotubes:Markets, Technologies and Opportunities. 2017-2027, (2017-04-21).[2017-05-06]. http://www.idtechex.com/research/reports/graphene-2d-materials-and-carbon-nanotubes-markets-technologies-and-opportunities-2017-2027-000530.asp.
[8] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40(14):4336.
[9] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150(1):5.
[10] Pérez S, Farré M L, Barceló D. Trac. Trend. Anal. Chem., 2009, 28(6):820.
[11] Farré M, Sanchís J, Barceló D. Trac. Trend. Anal. Chem., 2011, 30(3):517.
[12] Xia T J, Fortner J D, Zhu D Q, Qi Z C, Chen W. Environ. Sci. Technol., 2015, 49(19):11468.
[13] Akhavan O, Ghaderi E. ACS Nano, 2010, 4(10):5731.
[14] Das S, Singh S, Singh V, Joung D, Dowding J M, Reid D, Anderson J, Zhai L, Khondaker S I, Self W T, Seal S. Part. Part. Syst. Char., 2013, 30(2):148.
[15] Tian F, Zhang Y, Zhang J, Pan C. J. Phys. Chem. C, 2012, 116(13):7515.
[16] Perreault F, Faria A F D, Nejati S, Elimelech M. ACS Nano, 2015, 9(7):7226.
[17] Castrillón R V, Perreault F, Faria A F D, Elimelech M. Environ. Sci. Technol. Lett., 2016, 2(4):112.
[18] Wang F, Wang F, Zhu D, Chen W. Environ. Pollut., 2015, 196:371.
[19] Li X G, Chen W F, Zhang C D, Li Y, Wang F F, Chen W. Environ. Pollut., 2016, 214:341.
[20] Fu H, Zhu D. Environ. Sci. Technol., 2013, 47(9):4204.
[21] Wang F, Duan L, Wang F, Chen W. Nanoimpact, 2016, 1:21.
[22] Chowdhury I, Mansukhani N D, Guiney L M, Hersam M C, Bouchard D. Environ. Sci. Technol., 2015, 49(18):10886.
[23] Chen K L, Elimelech M. Langmuir, 2006, 22(26):10994.
[24] Bouchard D, Zhang W, Powell T, Rattanaudompol U S. Environ. Sci. Technol., 2012, 46(8):4458.
[25] Chen K L, Elimelech M. J. Colloid Interface Sci., 2007, 309(1):126.
[26] Chowdhury I, Duch M C, Mansukhani N D, Hersam M C, Bouchard D. Environ. Sci. Technol., 2013, 47(12):6288.
[27] Lu T, Xia T, Qi Y, Zhang C, Chen W. Environ. Toxicol. Chem., 2017, 36(3):655.
[28] Feng Y, Liu X, Huynh K A, Mccaffery J M, Mao L, Gao S, Chen K L. Environ. Sci. Technol., 2017, 51(12):6821.
[29] Huang G, Guo H, Zhao J, Liu Y, Xing B. Water Res., 2016, 102:313.
[30] Zhao J, Liu F, Wang Z, Cao X, Xing B. Environ. Sci. Technol., 2015, 49(5):2849.
[31] Hou L, Zhu D, Wang X, Wang L, Zhang C, Chen W. Environ. Toxicol. Chem., 2013, 32(3):493.
[32] Wang L, Huang Y, Kan A T, Tomson M B, Chen W. Environ. Sci. Technol., 2012, 46(10):5422.
[33] Wang F, Wang F, Gao G, Chen W. Environ. Toxicol. Chem., 2015, 34(9):1975.
[34] Li Y, Yang N, Du T, Xia T, Zhang C, Chen W. Nanoimpact, 2016, 3:90.
[35] Li Y, Yang N, Du T, Wang X, Chen W. Water Res., 2016, 103:416.
[36] Chowdhury I, Hou W C, Goodwin D, Henderson M, Zepp R G, Bouchard D. Water Res., 2015, 78:37.
[37] Fan Z J, Kai W, Yan J, Wei T, Zhi L J, Feng J, Ren Y M, Song L P, Wei F. ACS Nano, 2011, 5(1):191.
[38] Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Chem. Commun., 2010, 46(7):1112.
[39] Kotchey G P, Allen B L, Vedala H, Yanamala N, Kapralov A A, Tyurina Y Y, Seetharaman J K, Kagan V E, Star A. ACS Nano, 2011, 5(3):2098.
[40] Zhang C, Chen W, Alvarez P J J. Environ. Sci. Technol., 2014, 48(14):7918.
[41] Qi Z, Zhang L, Chen W. Environ. Sci. Proc. Impacts, 2014, 16(10):2268.
[42] Qi Z, Zhang L, Wang F, Hou L, Chen W. Environ. Toxicol. Chem., 2014, 33(5):998.
[43] Lanphere J D, Luth C J, Walker S L. Environ. Sci. Technol., 2013, 47(9):4255.
[44] Franchi A, O'Melia C R. Environ. Sci. Technol., 2003, 37(37):1122.
[45] Hahn M W, O'Meliae C R. Environ. Sci. Technol., 2017, 38(1):210.
[46] Tufenkji N, Elimelech M. Langmuir, 2004, 20(25):10818.
[47] Bradford S A, Simunek J, Bettahar M, Genuchten M T V, Yates S R. Water Resour. Res., 2006, 42(12):12.
[48] Bradford S A, Torkzaban S, Walker S L. Water Res., 2007, 41(13):3012.
[49] Wang D, Zhang W, Hao X, Zhou D. Environ. Sci. Technol., 2013, 47(2):821.
[50] Chen K L, Mylon S E, Elimelech M. Environ. Sci. Technol., 2006, 40(5):1516.
[51] Nguyen T H, Chen K L. Environ. Sci. Technol., 2007, 41(15):5370.
[52] Park S, Lee K S, Bozoklu G, Cai W, Nguyen S B T, Ruoff R S. ACS Nano, 2008, 2(3):572.
[53] Yang K, Wu W, Jing Q, Zhu L. Environ. Sci. Technol., 2008, 42(21):7931.
[54] Ke G, Guan W C, Tang C Y, Hu Z, Guan W J, Zeng D L, Deng F. Chin. Chem. Lett., 2007, 18(3):361.
[55] Gotovac S, Yang C M, Hattori Y, Takahashi K, Kanoh H, Kaneko K. J. Colloid Interface Sci., 2007, 314(1):18.
[56] Chen W, Duan L, Zhu D. Environ. Sci. Technol., 2007, 41(24):8295.
[57] Chen W, Duan L, Wang L, Zhu D. Environ. Sci. Technol., 2008, 42(18):6862.
[58] Woods L M, BǎdDescu S C, Reinecke T L. Phys. Rev. B, 2007, 75(15):155415.
[59] Chen J, Chen W, Zhu D. Environ. Sci. Technol., 2008, 42(19):7225.
[60] Vermisoglou E C, Georgakilas V, Kouvelos E, Pilatos G, Viras K, Romanos G, Kanellopoulos N K. Micropor. Mesopor. Mater., 2007, 99(1/2):98.
[61] Yang K, Xing B. Environ. Pollut., 2007, 145(2):529.
[62] Pan B, Lin D, Mashayekhi H, Xing B. Environ. Sci. Technol., 2008, 42(15):5480.
[63] Hou L, Fortner J D, Wang X, Zhang C, Wang L, Chen W. J. Environ. Sci., 2017, 51:315.
[64] Qi Z, Hou L, Zhu D, Ji R, Chen W. Environ. Sci. Technol., 2014, 48(17):10136.
[65] Wang F, Haftka J J, Sinnige T L, Hermens J L, Chen W. Environ. Pollut., 2014, 186:226.
[66] Cheng X, And A T K, Tomson M B. J. Chem. Eng. Data, 2004, 49(3):675.
[67] Zhang X, Kah M, Jonker M T O, Hofmann T. Environ. Sci. Technol., 2012, 46(13):7166.
[68] Chen G C, Shan X Q, Wang Y S, Wen B, Pei Z G, Xie Y N, Liu T, Pignatello J J. Water Res., 2009, 43(9):2409.
[69] Zhang L, Wang L, Zhang P, Kan A T, Chen W, Tomson M B. Environ. Sci. Technol., 2011, 45(4):1341.
[70] Wang L, Hou L, Wang X, Chen W. Environ. Sci. Proc. Impacts, 2014, 16(6):1282.
[71] Wang L, Fortner J D, Hou L, Zhang C, Kan A T, Tomson M B, Chen W. Environ. Sci. Technol., 2013, 32(2):329.
[72] Grolimund D, Borkovec M, Kurt Barmettler A, Sticher H. Environ. Sci. Technol., 1996, 30(10):3118.
[73] Chen W, Zhu D, Zheng S, Chen W. Environ. Sci. Technol., 2014, 48(7):3856.
[74] Hou W C, Chowdhury I, Jr G D, Henderson W M, Fairbrother D H, Bouchard D, Zepp R G. Environ. Sci. Technol., 2016, 49(6):3435.
[75] Hyung H, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2007, 41(1):179.
[76] Zhou X Z, Shu L, Zhao H B, Guo X Y, Wang X L, Tao S, Xing B S. Environ. Sci. Technol., 2012, 46(7):3891.
[77] Hyung H, Kim J H. Environ. Sci. Technol., 2008, 42(12):4416.
[1] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[2] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[3] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[4] Laijin Zhong, Zhijie Tang, Xin Hu, Hongzhen Lian. Advances of In Vitro Inhalation Bioaccessibility for the Contaminants in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(10): 1766-1779.
[5] Junfeng Wang, Yilin Wang, Xiaofei Zhang, Daoguang Wang, Yahui Li, Hongyan He, Xingchun Li, Suojiang Zhang. Technologies of Removal of Organics in Reverse Osmosis Concentrates from Petroleum Refinery Wastewater [J]. Progress in Chemistry, 2020, 32(10): 1462-1481.
[6] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[7] Lianjun Bao, Ying Guo, Liangying Liu, Eddy Y. Zeng*. Organic Contaminants in the Pearl River Delta, South China:Environmental Behavior and Human Exposure [J]. Progress in Chemistry, 2017, 29(9): 943-961.
[8] Fan Gongduan, Lin Rujing, Su Zhaoyue, Xu Renxing. Removing Water Contaminants Using Zeolitic Imidazolate Frameworks [J]. Progress in Chemistry, 2016, 28(12): 1753-1761.
[9] Zhang Fengzhen, Wu Chaofei, Hu Yun, Wei Chaohai. Photochemical Degradation of Halogenated Organic Contaminants [J]. Progress in Chemistry, 2014, 26(06): 1079-1098.
[10] Long Anhua, Lei Yang, Zhang Hui. In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process [J]. Progress in Chemistry, 2014, 26(05): 898-908.
[11] Zhang Yunfei, Yang Bo, Zhang Hong, Yu Gang, Deng Shubo, Liu Jianhong. Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts [J]. Progress in Chemistry, 2013, 25(12): 2159-2168.
[12] Han Qiang, Yang Shiying, Yang Xin, Shao Xueting, Niu Rui, Wang Leilei. Cobalt Catalyzed Peroxymonosulfate Oxidation: A Review of Mechanisms and Applications on Degradating Organic Pollutants in Water [J]. Progress in Chemistry, 2012, 24(01): 144-156.
[13] Mu Yunsong Liu Lei Zhang Aiqian Lin Yuan Wang Liansheng. QSAR Study on Chiral Chemicals and Further Application in Environmental Science [J]. Progress in Chemistry, 2009, 21(10): 2235-2241.
[14] . Use of in vivo and in vitro Bioassays for Environmental Monitoring [J]. Progress in Chemistry, 2009, 21(0203): 483-491.