中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 870-878 DOI: 10.7536/PC170520 Previous Articles   Next Articles

• Review •

Functional Additives for Perovskite Layer in Organic and Inorganic Hybrid Perovskite Solar Cells

Lu Wang1,2, Zhipeng Huo1*, Jinxin Yi1,2, Ahmed Alsaedi3, Tasawar Hayat3,4, Songyuan Dai1,3,5*   

  1. 1. Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. NAAM Research Group, Department of Mathematics, Faculty of Science, King Abudulaziz University, Jeddah 21589, Saudi Arabia;
    4. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
    5. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21103197), the National High Technology Research and Development Program of China (No. 2015AA050602), the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607), and the Anhui Provincial Natural Science Foundation (No. 1708085MB31).
PDF ( 1995 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of thin film solar cells, organic and inorganic hybrid perovskite solar cells (PSCs) have rapidly developed since the first PSCs were fabricated by Mayasaka, and the power conversion efficiency is improved from 3% to 22.1%. As light-harvesting materials, the perovskites show excellent photovoltaic performances, such as high absorption coefficient, high carrier mobility, long carrier diffusion lifetime and direct band gap. Nevertheless, the perovskite materials have shown limited effective lifetimes because the perovskite materials are sensitive to water and oxygen. As demonstrated in previous reports, functional additives can adjust structure of perovskite crystal, progress of crystallization or defect of crystal, which can improve the photovoltaic performances or long-term stability of PSCs. The application of functional additives in PSCs is reviewed in detail and predicted.
Contents
1 Introduction
2 Application of functional additives in perovskite solar cells
2.1 Inorganic additives
2.2 Organic additives
3 Conclusion

CLC Number: 

[1] Lee C H, Kim D R, Cho I S, William N, Wang Q, Zheng X L. Sci. Rep., 2012, 2:1002.
[2] (a) Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. Adv. Mater., 2014, 26:1584; (b)琚成功(Ju C G), 张宝(Zhang B), 冯亚青(Feng Y Q). 化学进展(Prog. Chem.), 2016, 28(2/3):219.
[3] (a) Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050; (b)王桂强(Wang G Q), 段彦栋(Duan Y D), 张娟(Zhang J),林原(Lin Y), 禚淑萍(Zhuo S P). 化学进展(Prog. Chem.), 2014, 26(7):1255.
[4] Kim B H, Hong S J, Baek S J, Jeong H Y, Park N, Lee M, Lee S W, Park M, Chu S W, Shin H S, Lim J, Lee J C, Jun Y, Park Y W. Sci. Rep., 2012, 2:1004.
[5] Liu M Z, Johnston M B, Snaith H J. Nature, 2013, 501:395.
[6] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I. Science, 2017, 356:1376.
[7] (a)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D).化学进展(Prog. Chem.), 2011, 23(9):1915; (b)Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y. Science, 2015, 350:944.
[8] Wang K, Liang Z Q, Wang X Q, Cui X D. Adv. Electron. Mater., 2015, 1:1500089.
[9] Katan C, Pedesseau L, Kepenekian M, Rolland A, Even J. J. Mater. Chem. A, 2015, 3:9232.
[10] Suarez B, Gonzalez-Pedro V, Ripolles T S, Sanchez R S, Otero L, Mora-Sero I. J. Phys. Chem. Lett., 2014, 5:1628.
[11] Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. J. Phys. Chem. Lett., 2014, 5:429.
[12] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338:643.
[13] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R. Chem. Mater., 2013, 25:4613.
[14] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499:316.
[15] Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. Angew. Chem. Int. Ed., 2014, 53:9898.
[16] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[17] Li X, Bi D Q, Yi C Y, Decoppet J D, Luo J S, Zakeeruddin S M, Hagfeldt A, Grätzel M. Science, 2016, 353:58.
[18] Chen Y X, Ge Q Q, Shi Y, Liu J, Xue D J, Ma J Y, Ding J, Yang H J, Hu J S, Wan L J. J. Am. Chem. Soc., 2016, 138:16196.
[19] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M. Energ. Environ. Sci., 2016, 9:1989.
[20] Chen Y N, Zhao Y X, Liang Z Q. Chem. Mater., 2015, 27:1448.
[21] (a) Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G. J. Am. Chem. Soc., 2015, 137:8696; (b) Ren Y K, Duan B, Xu Y F, Huang Y, Li Z Q, Hu L H, Hayat T, Wang H X, Zhu J, Dai S Y. Science China Mater., 2017, 17:1.
[22] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137:7843.
[23] Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6:2452.
[24] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354:206.
[25] Chang J, Lin Z, Zhu H, Isikgor F H, Xu Q H, Zhang C, Hao Y, Ouyang J. J. Mater. Chem. A, 2016, 4:16546.
[26] Bag S, Durstock M F. ACS Appl. Mater. Interfaces, 2016, 8:5053.
[27] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[28] Eperon G E, Stranks S D, Menelaon C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[29] Wang F, Yu H, Xu H H, Zhao N. Adv. Funct. Mater., 2015, 25:1120.
[30] Yang L, Wang J, Leung W W F. ACS Appl. Mater. Interfaces, 2015, 7:14614.
[31] Ke W J, Xiao C X, Wang C L, Saparov B, Duan H S, Zhao D W, Xiao Z W, Schulz P, Harvey S P, Liao W Q, Meng W W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G J, Mitzi D B, Yan Y F. Adv. Mater., 2016, 28:5214.
[32] Yang S D, Liu W Q, Zuo L J, Zhang X Q, Ye T, Chen J H, Li C Z, Wu G, Chen H Z. J. Mater. Chem. A, 2016, 4:9430.
[33] (a)Dong G H, Ye T L, Pang B Y, Yang Y L, Sheng L, Shi Y, Fan R Q, Wei L Q, Su T. Phys. Chem. Chem. Phys., 2016, 18:26254; (b)Wu Q L, Zhou P C, Zhou W R, Wei X F, Chen T, Yang S F. ACS Appl. Mater. Interfaces, 2016, 8:15333.
[34] Wu C G, Chiang C H, Tseng Z L, Nazeeruddin M K, Hagfeldt A, Gätzel M. Energ. Environ. Sci., 2015, 8:2725.
[35] Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S. Adv. Funct. Mater., 2015, 25:6671.
[36] Pan J, Mu C, Li Q, Li W, Ma D, Xu D. Adv. Mater., 2016, 28:8309.
[37] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, deQuilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J. Nat. Commun., 2015, 6:10030.
[38] Li F, Ma C, Wang H, Hu W J, Yu W L, Sheikh A D, Wu T. Nature Commun., 2015, 6:8238.
[39] Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W, Kim D S. Adv. Mater. Interfaces, 2016, 3:7.
[40] Guo Y L, Sato W, Shoyama K, Nakamura E. J. Am. Chem. Soc. 2016, 138:5410.
[41] Shi Y T, Wang X Y, Zhang H, Li B, Lu H L, Ma T L, Hao C. J. Mater. Chem. A, 2015, 3:22191.
[42] Lee J W, Kim H S, Park N G. Acc. Chem. Res., 2016, 49:311.
[43] Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y. Adv. Mater., 2014, 26:3748.
[44] Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J. ACS Nano, 2014, 8:9815.
[45] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nature Mater., 2014, 13:897.
[46] Song X, Wang W, Sun P, Ma W, Chen Z K. J. Phys. Chem. Lett., 2015, 106:033901.
[47] Li X, Dar M I, Yi C Y, Luo J S, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H W, Grätzel M. Nat. Chem., 2015,7:703.
[48] Li Y W, Meng L, Yang Y, Xu G Y, Hong Z R, Chen Q, You J B, Li G, Yang Y, Li Y F. Nat. Commun., 2016, 7:10214.
[49] Babayigit A, Ethirajan A, Muller M, Conings B. Nature Mater. 2016, 15:247.
[50] Zhao Y C, Wei J, Li H, Yan Y, Zhou W K, Yu D P, Zhao Q. Nat. Commun., 2016,7:10228.
[51] Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M. Nat. Energ., 2016, 1:16142.
[52] Zhang C C, Li M, Wang Z K, Jiang Y R, Liu H R, Yang Y G, Gao X Y, Ma H. J. Mater.Chem. A, 2017, 5:2572.
[53] Li M, Chao Y H, Kang T, Wang Z K, Yang Y G, Feng S L, Hu Y, Gao X Y, Liao L S, Hsu C S. J. Mater. Chem. A, 2016, 4:15088.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[7] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[8] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[9] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[10] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[11] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[12] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[13] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[14] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[15] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.