中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 911-918 DOI: 10.7536/PC170510 Previous Articles   Next Articles

• Review •

Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers

Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No.2013CB632405),NSFC (No.21590811,21521062,21525729),and the CAS Interdisciplinary Innovation Team of the Chinese Academy of Sciences.
PDF ( 1349 ) Cited
Export

EndNote

Ris

BibTeX

Global extensive concerns have been caused by polybrominated diphenyl ethers (PBDEs),because of their universal existence and potential toxicity in ecological environment. The use of solar energy, high selectivity and the mild reaction conditions make photocatalysis become a promising technique for the removal of these pollutants. Recently, great progress has been made in photocatalytic degradation of polyhalogenated organic pollutions. This review mainly focuses on TiO2-based photocatalytic reduction of PBDEs, which are typical polyhalogenated aromatic hydrocarbons. The ways to improve photocatalytic reductive efficiency and the reaction mechanism have been described. In addition, the promising future of PBDEs photocatalytic reductive debromination is prospected.
Contents
1 Introduction
2 An overview of PBDEs
3 Photocatalytic reductive debromination of PBDEs
3.1 Photocatalytic reductive debromination based on TiO2
3.2 Photoreductive debromination based on halogen bonding under visible light
4 Proton-coupled electron transfer based on photocatalytic reductive process of PBDEs
5 Conclusion

CLC Number: 

[1] van den Berg M, Birnbaum L, Bosveld A T, Brunström B, Cook P, Feeley M, Giesy J P, Hanberg A, Hasegawa R, Kennedy S W, Kubiak T, Larsen J C, van Leeuwen F, Liem A K, Nolt C, Peterson R E, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T. Environ. Health Perspect., 1998, 106:775.
[2] Mandalakis M, Tsapakis M, Tsoga A, Stephanou E G. Atmos. Environ., 2002, 36:4023.
[3] Lohmann R, Macfarlane J K, Gschwend P M. Environ. Sci. Technol., 2005, 39:141.
[4] de Wit C A. Chemosphere, 2002, 46:583.
[5] Alaee M, Ariasb P, Sjödin A, Bergman A. Environ. Int., 2003, 29:683.
[6] Hale R C, Guardia M L, Harvey E, Mainor T M. Chemosphere, 2002, 46:729.
[7] Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Environ. Sci. Technol., 2002, 36:1681.
[8] Olsen G W, Burris J M, Ehresman D J, Froehlich J W, Seacat A M, Butenhoff J L, Zobel L R. Environ. Health Perspect., 2007, 115:1298.
[9] Sjodln A, Jakobsson E, Kierkegaard A, Marsh G, Sellstrrm U. J. Chromatogr. A, 1998, 822:83.
[10] van der Oost R, Beyer J, Vermeulen N P E. Environ. Toxicol. Pharmacol., 2003, 1357.
[11] Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44:2997.
[12] Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Environ. Sci. Technol., 2002, 36:1202.
[13] Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Chemosphere, 2014, 99:19.
[14] Luo Y M, Guo W S, Ngo H H, Nghiem L D, Hai F I, Zhang J, Liang S, Wang X C. Sci. Total Environ., 2014, 473/474:619.
[15] Li W C, Tse H F, Fok L. Sci. Total Environ., 2016, 566/567:333.
[16] Su C M. J. Hazard. Mater., 2017, 322:48.
[17] Venier M, Salamova A, Hites R A. Acc. Chem. Res., 2015, 48:1853.
[18] Kirchgeorg T, Dreyer A, Gabrielli P, Gabrieli J, Thompson L G, Barbante C, Ebinghaus R. Environ. Pollut., 2016, 218:804.
[19] Lam J C, Kajiwara N, Ramu K, Tanabe S, Lam P K. Environ. Pollut., 2007, 148:258.
[20] Sellstrom U, Kierkegaard A, Wit C D, Jansson B. Environ. Toxicol. Chem., 1998, 17:1065.
[21] Dumanoglu Y, Kara M, Altiok H, Odabasi M, Elbir T, Bayram A. Atmos. Environ., 2014, 98:168.
[22] Ma X X, Liu S J, Liu Y, Gu G D, Xia C H. Sci. Rep., 2016, 6:25068.
[23] Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Environ. Int., 2011, 37:1362.
[24] Yang M T, Zhang X R. Environ. Sci. Technol., 2013, 47:10868.
[25] Delle Site A. J. Phys. Chem. Ref. Data, 2001, 30:187.
[26] 刘汉霞(Liu H X), 张庆华(Zhang Q H), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2005, 17:554.
[27] Guardia M J L, Hale R C, Harvey E. Environ. Sci. Technol., 2006, 40:6247.
[28] Hale R C, LaGuardia M J, Harvey E P, Gaylor M O, Mainor T M, Duff W H. Nature, 2001, 412:140.
[29] Stapleton H M, Alaee M, Letcher R J, Baker J E. Environ. Sci. Technol., 2004, 38:112.
[30] Stapleton H M, Letcher R J, Baker J E. Environ. Sci. Technol., 2004, 38:1054.
[31] Wardrop P, Shimeta J, Nugegoda D, Morrison P D, Miranda A, Tang M, Clarke B O. Environ. Sci. Technol., 2016, 50:4037.
[32] Guigueno M F, Fernie K J. Environ. Res., 2017, 154:398.
[33] Kilunga P I, Sivalingam P, Laffite A, Grandjean D, Mulaji C K, de Alencastro L F, Mpiana P T, Pote J. Chemosphere, 2017, 179:37.
[34] van der Veen I, de Boer J. Chemosphere, 2012, 88:1119.
[35] Koelmans A A, Bakir A, Burton G A, Janssen C R. Environ. Sci. Technol., 2016, 50:3315.
[36] Hakk H. Environ. Int., 2003, 29:801.
[37] Eriksson J, Green N, Marsh G, Bergman A. Environ. Sci. Technol., 2004, 38:3119.
[38] Suh Y W, Buettner G R, Venkataraman S, Treimer S E, Robertson L W, Ludewig G. Environ. Sci. Technol., 2009, 43:2581.
[39] Lee L K, He J Z. Appl. Environ. Microbiol., 2010, 76:794.
[40] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39:2280.
[41] Granelli L, Eriksson J, Athanasiadou M, Bergman A. Chemosphere, 2011, 82:839.
[42] Nose K, Hashimoto S, Takahashi S, Noma Y, Sakai S. Chemosphere, 2007, 68:120.
[43] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39:4206.
[44] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J M. Appl. Catal. B:Environ., 2001, 31:145.
[45] Li X Z, Li F B. Environ. Sci. Technol., 2001, 35:2381.
[46] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl. Catal. B:Environ., 2001, 32:215.
[47] Arabatzis I M, Stergiopoulos T, Bernard M C, Labou D, Neophytides S G, Falaras P. Appl. Catal. B:Environ., 2003, 42:187.
[48] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J. Am. Chem. Soc., 2004, 126:4782.
[49] Sakthivel S, Shankar M V, Palanichamy M, Arabindoo B, Bahnemann D W, Murugesan V. Water Res., 2004, 38:3001.
[50] Huang A, Wang N, Lei M, Zhu L, Zhang Y, Lin Z, Yin D, Tang H. Environ. Sci. Technol., 2013, 47:518.
[51] Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302:158.
[52] Sun C Y, Zhao D, Chen C C, Ma W H, Zhao J C. Environ. Sci. Technol., 2009, 43:157.
[53] 赵丹(Zhao D), 孙春燕(Sun C Y), 陈春城(Chen C C), 马万红(Ma W H), 赵进才(Zhao J C). 化学进展(Progress in Chemistry), 2009, 21:400.
[54] An T C, Chen J X, Li G Y, Ding X J, Sheng G Y, Fu J M, Mai B X, O'Shea K E. Catalysis Today, 2008, 139:69.
[55] Li L N, Chang W, Wang Y, Ji H W, Chen C C, Ma W H, Zhao J C. Chem. -Eur. J., 2014, 20:11163.
[56] Lei M, Wang N, Zhu L H, Tang H Q. Chemosphere, 2016, 150:536.
[57] Hu J W, Zhuang Y, Luo J, Wei X H, Huang X F. Int. J. Mol. Sci., 2012, 13:9332.
[58] Zhuang Y, Jin L T, Luthy R G. Chemosphere, 2012, 89:426.
[59] Luo S, Yang S G, Sun C, Gu J D. Sci. Total Environ., 2012, 429:300.
[60] Su J Y, Lu N, Zhao J J, Yu H T, Huang H, Dong X L, Quan X. J. Hazard. Mater., 2012, 231/232:105.
[61] Su J Y, Yu H T, Chen S, Quan X, Zhao Q. Sep. Purif. Technol., 2012, 96:154.
[62] Laguna A, Lasanta T, López-de-Luzuriaga J M, Monge M, Naumov P, Olmos M E. J. Am. Chem. Soc., 2010, 132:456.
[63] Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C, Zhao J C. Appl. Catal. B:Environ., 2016, 194:150.
[64] Sperotto E, van Klink G P M, van Koten G, de Vries J G. Dalton Trans., 2010, 39:10338.
[65] Isse A A, Gennaro A, Lin C Y, Hodgson J L, Coote M L, Guliashvili T. J. Am. Chem. Soc., 2011, 133:6254.
[66] Sun C Y, Zhao J C, Ji H W, Ma W H, Chen C C. Chemosphere, 2012, 89:420.
[67] Sun C Y, Chang W, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2013, 47:2370.
[68] Kajiwara N, Noma Y, Takigami H. Environ. Sci. Technol., 2008, 42:4404.
[69] Schenker U, Soltermann F, Scheringer M, Hungerbuhler K. Environ. Sci. Technol., 2008, 42:9244.
[70] Bendig P, Vetter W. Environ. Sci. Technol., 2010, 44:1650.
[71] Wang J, Chen S J, Nie X, Tian M, Luo X J, An T C, Mai B X. Chemosphere, 2012, 89:844.
[72] Dawson R E, Hennig A, Weimann D P, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley C A, Matile S. Nat. Chem., 2010, 2:533.
[73] Shirman T, Arad T, van der Boom M E. Angew. Chem. Int. Ed., 2010, 49:926.
[74] Chang W, Sun C H, Pang X B, Sheng H, Li Y, Ji H W, Song W J, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2015, 54:2052.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[5] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[6] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[7] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[8] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[9] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[10] Yang Wu, Yu Wang, Rongliang Qiu, Xin Yang. Reductive Debromination and Advanced Oxidation of Polybrominated Diphenyl Ethers(PBDEs) Using Zero-Valent Iron(ZVI) Based Materials [J]. Progress in Chemistry, 2018, 30(4): 420-428.
[11] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[12] Wenbo Zhang, Fangqin Li, Jiang Wu*, Hexing Li*. Mercury Removal Technologies of the Flue Gas from Power Plants [J]. Progress in Chemistry, 2017, 29(12): 1435-1445.
[13] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[14] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[15] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.