中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 930-942 DOI: 10.7536/PC170503 Previous Articles   Next Articles

• Review •

Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications

Benzhan Zhu1,2*, Linna Xie1,2, Chen Shen1,2, Huiying Gao1,2, Liya Zhu1, Li Mao1,2*   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Strategic Priority Research Program of CAS (B) (No. XDB01020300) and the National Natural Science Foundation of China (No.21321004, 21477139, 21577149).
PDF ( 820 ) Cited
Export

EndNote

Ris

BibTeX

The ubiquitous distribution of halogenated aromatic pollutants (XAr)coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been employed as an "environmental-green" technology for treatment and degradation of such recalcitrant and highly toxic XAr. During our study on the molecular mechanism of metal-independent hydroxyl radicals (·OH) production by halogenated quinones and H2O2, we unexpectedly find that an unprecedented·OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H2O2 and tetrachloro-p-benzoquinone, which is the major carcinogenic metabolite of the widely-used wood preservative pentachlorophenol. We further find that·OH-producing AOPs-mediated degradation of pentachlorophenol and all other XAr could produce intrinsic CL that is directly dependent on the formation of the extremely reactive·OH.A systematic structure-activity relationship study for all 19 chlorinated phenols demonstrates that the CL increases with an increasing number of chlorine-substitution in general. More interestingly, a relatively good correlation is noticed that not only between CL intensity and chlorinated quinoid intermediates, but also between CL emission and semiquinone radicals. Taken together, we propose that·OH-dependent formation of quinoid intermediates, quinone-1,2-dioxetane and electronically excited carbonyl species is responsible for this unusual intrinsic CL production.A rapid, sensitive, simple, and effective CL method has been developed to not only detect and measure trace amount of XAr in real environment, but also to provide useful information for predicting the toxicity or monitoring the degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on remediation of other halogenated persistent organic pollutants by AOPs.
Contents
1 Introduction
2 An·OH-dependent CL could be generated by carcinogenic polyhalogenated quinones and H2O2
2.1 The CL system of tetrachloro-1,4-benzoquinone (TCBQ) and H2O2
2.2 Possible light-emitting intermediates
2.3 Molecular mechanism for·OH-dependent CL generation
2.4 Other halogenated quinones could generate similar·OH-dependent CL
3 Intrinsic·OH-dependent CL could also be produced from degradation of pentachlorophenol (PCP) during advanced oxidation processes
3.1 An intrinsic CL emission from advanced oxidation of PCP by the classic Fenton system
3.2 The primary intermediates and ring-opening product
3.3 Possible molecular mechanism for CL emission during·OH-dependent PCP degradation
4 The structure-activity relationship study on the CL emission from the degradation of chlorinated phenols
4.1 Chlorinated phenols could generate CL during the·OH-generating AOPs
4.2 A good correlation between CL emission and the formation of chlorinated quinoid intermediates
4.3 Possible molecular basis for the correlation between CL emission and chlorinated phenols
4.4 A good correlation between CL emission and the formation of the chlorinated semiquinone radicals
4.5 Relatively good correlations between CL and the toxicity/degradation rate of chlorinated phenols
5 Other halogenated aromatic compounds could generate intrinsic CL during their advanced degradation by·OH-generating systems
6 Conclusion

CLC Number: 

[1] Zhu B Z, Shan G Q. Chem. Res. Toxicol., 2009, 22:969.
[2] 朱本占(Zhu B Z). 科学通报(Chin. Sci. Bull.), 2009, 54:1673.
[3] Zhu B Z, Zhu J G, Fan R M, Mao L. Adv. Mol. Toxicol., 2011, 5:1.
[4] Dann A B, Hontela A. J. Appl. Toxicol., 2010, 31:285.
[5] De Wit C A. Chemosphere, 2002, 46:583.
[6] Ramamoorthy S. Chlorinated Organic Compounds in the Environment:Regulatory and Monitoring Assessment. Boca Raton, FL:CRC Press, 1997.
[7] Fang X W, Schuchmann H P, von Sonntag C J. Chem. Soc. Perkin Trans., 2000, 2:1391.
[8] Zimbron J A, Reardon K F. Water Research, 2009, 43:1831.
[9] Lan Q, Li F, Liu C, Li X Z. Environ. Sci. Technol., 2008, 42:7918.
[10] Gupta S S, Stadler M, Noser C A, Ghosh A, Steinhoff B, Lenoir D, Horwitz C P, Schramm K W, Collins T J. Science, 2002, 296:326.
[11] Sorokin A, Seris J L, Meunier B. Science, 1995, 268:1163.
[12] Zhang H, Huang C H. Environ. Sci. Technol., 2003, 37:2421.
[13] Zhong Y H, Liang X, Zhong Y, Zhu J, Zhu S, Yuan P, He H, Zhang J. Water Res., 2012, 46:4633.
[14] Peller J, Wiest O, Kamat P V. Chem. -Eur. J., 2003, 9:5379.
[15] IARC Working Group.IARC Monogr Eval Carcinog Risk Chem Hum., 2016, 17:1637.
[16] Von Sonntag C. Water Sci. Technol., 2008, 58:1015.
[17] Wang J N, Xu L J. Crit. Rev. Environ. Sci. Technol., 2012, 42:251.
[18] Pera-Titus M, García-MolinaV, Baños M A, Giménez J, Esplugas S. Appl. Catalysis B:Environ., 2004, 47:219.
[19] Liou R, Che S, Hung M, Hsu C. Chemosphere, 2004, 55:1271.
[20] Liao C, Chung T, Che W, Kuo S. J. Mol. Catal. A:Chem., 2007, 265:189.
[21] Lente G, Espenson J H. Chem. Commun., 2003, 39:1163.
[22] Chu W. Environ. Sci. Technol., 1999, 33:421.
[23] Hong P K A, Zeng Y. Water Res., 2002, 36:4243.
[24] Schuster G B. Acc. Chem. Res., 1979, 12:366.
[25] Matsumoto M. J. Photochem. Photobiol. C, 2004, 5:27.
[26] Almeida de Oliveira M, Bartoloni F H, Augusto F A, Ciscato L F, Bastos E L, Baader W J. J. Org. Chem., 2012, 77:10537.
[27] Widder E A. Science, 2010, 328:704.
[28] Adam W, Kazakov D V, Kazakov V P. Chem. Rev., 2005, 105:3371.
[29] Grayeski M L. Anal.Chem., 1987, 59:1243A.
[30] McCapra F. Methods Enzymol., 2000, 305:3.
[31] Wang D, Zhao L, Guo L H, Zhang H. Anal. Chem., 2014, 86:10535.
[32] Cannizzaro V, Bowie A R, Sax A, Achterberg E P. Analyst, 2000, 125:51.
[33] Lin J M, Yamada M. Anal. Chem., 2000, 72:1148.
[34] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Oxford:Oxford University Press, 2007.
[35] Wagner J R, Cadet J. Acc. Chem. Res., 2010, 43:564.
[36] Xu G, Chance M R. Chem. Rev., 2007, 107:3514.
[37] Voinov M A, Pagan J O S, Morrison E, Smirnova T I, Smirnov A I. J. Am. Chem. Soc., 2011, 133:35.
[38] Montzka S A, Krol M, Dlugokencky E, Hall B, Jöckel P, Lelieveld J. Science, 2011, 331:67.
[39] Rohrer F, Berresheim H. Nature, 2006, 442:184.
[40] Meunier B. Science, 2002, 296:270.
[41] Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270:942.
[42] Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free Radic. Biol. Med., 2002, 32:465.
[43] Zhu B Z, Zhao H T, Kalyanaraman B, Liu J, Shan G Q, Du Y G, Frei B. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3698.
[44] Zhu B Z, Kalyanaraman B, Jiang G B. Proc. Natl. Acad. Sci.U.S.A., 2007, 104:17575.
[45] Zhu B Z, Shan G Q, Huang C H, Kalyanaraman B, Mao L, Du Y G. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:11466.
[46] Jia S, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010, 397:2395.
[47] Zhu B Z, Fan R M, Qu N. Mini-Rev. Org. Chem., 2011, 8:434.
[48] Yin R, Zhang D, Song Y, Zhu B Z, Wang H. Sci. Rep., 2013, 3:1269.
[49] Huang C H, Shan G Q, Mao L, Kalyanaraman B, Zhu B Z. Chem. Commun., 2013, 49:6436.
[50] Shao J, Huang C H, Kalyanaraman B, Zhu B Z. Free Radic. Biol. Med., 2013, 60:177.
[51] Qin H, Huang C H, Shan G Q, Mao L, Kalyanaraman B, Zhu B Z. Free Radic. Biol. Med., 2013, 63:459.
[52] Zhao B, Yang Y, Wang X, Chong Z, Yin R, Song S H, Zhao C, Li C, Huang H, Sun B F, Wu D, Jin K X, Song M, Zhu B Z, Jiang G, Rendtlew Danielsen J M, Xu G L, Yang Y G, Wang H. Nucleic Acids Res., 2014, 42:1593.
[53] Huang C H, Ren F R, Shan G Q, Qin H, Mao L, Zhu B Z. Chem. Res. Toxicol., 2015, 28:831.
[54] Kanakubo A, Isobe M. Bioorg. Med. Chem., 2005, 13:2741.
[55] Kanakubo A, Koga K, Isobe M, Yoza K. Luminescence, 2005, 20:397.
[56] Zhu B Z, Mao L, Huang C H, Qin H, Fan R M, Kalyanaraman B, Zhu J G. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:16046.
[57] 朱本占(Zhu B Z), 任福荣(Ren F R), 毛莉(Mao L), 高慧颖(Gao H Y), 刘庆林(Liu Q L), 刘蒲(Liu P). 科学通报(Chin. Sci. Bull.), 2015, 60:1855.
[58] Bos R, Tonkin S A, Hanson G R, Hindson C M, Lim K F, Barnett N W. J. Am. Chem. Soc., 2009, 131:2770.
[59] Mao L, Liu Y X, Huang C H, Gao H Y, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2015, 49:7940.
[60] 朱本占(Zhu B Z), 邵波(Shao B), 毛莉(Mao L), 高慧颖(Gao H Y). 化学学报(Acta. Chimica. Sinica), 2016,74:557.
[61] Wardman P, Candeias L P. Radiat. Res., 1996, 145:523.
[62] Goldstein S, Meyerstein D, Czapski G. Free Radic. Biol. Med., 1993, 15:435.
[63] Weavers L K, Malmstadt N, Hoffmann M R. Environ. Sci. Technol., 2000, 34:1280.
[64] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35:1771.
[65] Gao H Y, Mao L, Shao B, Huang C H, Zhu B Z. Sci. Rep., 2016, 6:33159.
[66] Gao H Y, Mao L, Li F, Xie L N, Huang C H, Shao J, Shao B, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2017, 51:2934.
[67] Carey F A. Organic Chemistry. 4th ed. USA:McGraw-Hill Higher Education, 2000. 463.
[68] Lee J E, Choi W Y, Mhin B J, Balasubramanian K. J. Phys. Chem. A, 2004, 108:607.
[69] Akai N, Kudoh S, Takayanagi M, Nakata M. J. Photochem. Photobiol. A, 2001, 146:49.
[70] Tang W Z, Huang C P. Waste Manage., 1995, 15:615.
[71] Kishino T, Kobayashi K. Water Res., 1994, 28:1547.
[72] Bolton J L, Trush M A, Penning T M, Dryhurst G, Monks T J. Chem. Res. Toxicol., 2000, 13:135.
[73] Han S K, Ichikawa K, Utsumi H. Water Res., 1988, 32:1978.
[74] Smith S, Furay V J, Layiwola P J, Menezes-Filho J A. Chemosphere, 1994, 28:825.
[75] Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj P K. Chem. Res. Toxicol., 2006, 19:356.
[76] Kishino T, Kobayashi K. Water Res., 1996, 30:387.
[77] Chen C Y, Lin J H. Chemosphere, 2006, 62:503.
[78] Antonaraki S, Androulaki E, Dimotikali D, Hiskia A, Papaconstantinou E. J. Photochem. Photobiol. A, 2002, 148:191.
[79] Parra S, Olivero J, Pacheco L, Pulgarin C. Appl. Catal. B, 2003, 43:293.
[80] Oturan N, Panizza M, Oturan M A. J. Phys. Chem. A, 2009, 113:10988.
[81] Zhao Y L, Qin F, Boyd J M, Anichina J, Li X F. Anal. Chem., 2010, 82:4599.
[82] Song Y, Wagner B A, Witmer J R, Lehmler H J, Buettner G R. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:9725.
[83] Chignell C F, Han S K, Mouithys-Mickalad A, Sik R H, Stadler K, Kadiiska M B. Toxicol. Appl. Pharmacol., 2008, 230:17.
[84] Teuten E L, Xu L, Reddy C M. Science, 2005, 307:917.
[85] Kelly B C, Ikonomou M G, Blair J D, Morin A E, Gobas F A P C. Science, 2007, 317:236.
[86] Sun Y, Pignatello J J. Environ. Sci. Technol., 1993, 27:304.
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[3] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[4] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[5] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[6] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[7] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[8] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[9] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[10] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[11] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[12] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[13] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[14] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[15] Yang Yukun, Wang Xiaomin, Fang Guozhen, Yun Yaguang, Guo Ting, Wang Shuo. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique [J]. Progress in Chemistry, 2016, 28(9): 1351-1362.