中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 833-845 DOI: 10.7536/PC170501 Previous Articles   Next Articles

• Review •

Recent Advances in Graphene Based Separation Membranes

Feng He, Ran Ji, Feng He*   

  1. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51308312) and Zhejiang Provincial Natural Science Foundation (No. LQ16E020007).
PDF ( 3170 ) Cited
Export

EndNote

Ris

BibTeX

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a two-dimensional crystal. As the building block for various macroscopic membranes, graphene has been known as a rising star in the area of membrane separation. The preparation and application of graphene based separation membrane are discussed in this review. Particular emphasis is directed to the wide application of graphene based membrane in the field of water treatment, gas separation, desalination and so on. Compared to traditional polymer membrane, graphene based separation membrane has the advantage of anti-fouling, high flux and good selectivity. Moreover, the application of other emerging 2D materials such as BN, MoS2 and WS2 in separation technology is also discussed. Finally, the future opportunities and challenges for the wide application of graphene based membrane are also discussed along with perspectives for future research in these fields.
Contents
1 Introduction
2 The preparation of graphene based membranes
2.1 Vacuum filtration method
2.2 Spin coating/spraying method
2.3 Layer-by-layer self-assembly method
2.4 Blending method
3 The application of graphene based membranes
3.1 Gas separation
3.2 CO2 capture
3.3 Water purification
3.4 Desalination
3.5 Isotope removal
4 Membrane modification and performance improvement
4.1 Antifouling properties
4.2 Flux increase
4.3 Balance between the selectivity and flux
5 Separation membranes based on other emerging two-dimensional materials
6 Conclusion

CLC Number: 

[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[2] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.
[3] Liu G, Jin W, Xu N. Chem. Soc. Rev., 2015, 44:5016.
[4] Park J, Bazylewski P, Fanchini G. Nanoscale, 2016, 8:9563.
[5] Sun P, Wang K, Zhu H. Adv. Mater., 2016, 28:2287.
[6] Yoo B M, Shin J E, Lee H D, Park H B. Curr. Opin. Chem. Eng., 2017, 16:39.
[7] Huang L, Zhang M, Li C, Shi G. J. Phys. Chem. Lett., 2015, 6:2806.
[8] Sun C, Wen B, Bai B. Sci. Bull., 2015, 60:1807.
[9] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448:457.
[10] Qiu L, Zhang X, Yang W, Wang Y, Simon G P, Li D. Chem. Commun., 2011, 47:5810.
[11] Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Chem. Commun., 2013, 49:5963.
[12] Han Y, Xu Z, Gao C. Adv. Funct. Mater., 2013, 23:3693.
[13] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. ACS Nano, 2008, 2:463.
[14] Lue S J, Pai Y L, Shih C M, Wu M C, Lai S M. J. Membr. Sci., 2015, 493:212.
[15] Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B. Science, 2013, 342:91.
[16] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano Lett., 2007, 7:3394.
[17] Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335:442.
[18] Hu M, Mi B. Environ. Sci. Technol., 2013, 47:3715.
[19] Zhao L, Yuan B, Geng Y, Yu C, Kim N H, Lee J H, Li P. Compos. Part A-Appl. Sci. Manufact., 2015, 78:60.
[20] 万武波(Wan W B), 赵宗彬(Zhao Z B), 范彦如(Fan Y R), 胡涵(Hu H), 周泉(Zhou Q), 邱介山(Qiu J S). 化学进展(Progress in Chemistry), 2011, 23:1883.
[21] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299:50.
[22] Fryczkowska B, Sieradzka M, Sarna E, Fryczkowski R, Janicki J. J. Appl. Polym. Sci., 2015, 132:42789.
[23] Ouyang G, Hussain A, Li J B, Li D X. RSC Adv., 2015, 5:70448.
[24] Jiang D, Cooper V R, Dai S. Nano Lett., 2009, 9:4019.
[25] Du H, Li J, Zhang J, Su G, Li X, Zhao Y. J. Phys. Chem. C, 2011, 115:23261.
[26] Koenig S P, Wang L D, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[27] Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Small, 2010, 6:2266.
[28] Berean K J, Ou J Z, Nour M, Field M R, Alsaif M, Wang Y C, Ramanathan R, Bansal V, Kentish S, Doherty C M, Hill A J, McSweeney C, Kaner R B, Kalantar-zadeh K. J. Phys. Chem. C, 2015, 119:13700.
[29] Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G. Science, 2014, 344:289.
[30] Kalaitzidou K, Fukushima H, Drzal L T. Carbon, 2007, 45:1446.
[31] Raman R K S, Tiwari A. JOM, 2014, 66:637.
[32] Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Angew. Chem. Int. Ed., 2015, 54:578.
[33] Hu Y, Wei J, Liang Y, Zhang H, Zhang X, Shen W, Wang H. Angew. Chem. Int. Ed., 2016, 55:2048.
[34] Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. ACS Nano, 2016, 10:3398.
[35] Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. J. Mater. Chem. A, 2017, 5:649.
[36] Karunakaran M, Shevate R, Kumar M, Peinemann K V. Chem. Commun., 2015, 51:14187.
[37] Shen Y, Wang H, Liu J, Zhang Y. ACS Sustain. Chem. Eng., 2015, 3:1819.
[38] Cheng X Q, Zhang C, Wang Z X, Shao L. J. Membr. Sci., 2016, 499:326.
[39] Xu C, Cui A, Xu Y, Fu X. Carbon, 2013, 62:465.
[40] Kanchanapally R, Nellore B P V, Sinha S S, Pedraza F, Jones S J, Pramanik A, Chavva S R, Tchounwou C, Shi Y, Vangara A, Sardar D, Ray P C. RSC Adv., 2015, 5:18881.
[41] Zhang Y, Zhang S, Chung T S. Environ. Sci. Technol., 2015, 49:10235.
[42] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343:752.
[43] Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little R B, Xu Z, Zhu H. ACS Nano, 2014, 8:850.
[44] Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R. Nat. Nanotechnol., 2017, 21:1748.
[45] Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. Angew. Chem., 2014, 53:6929.
[46] Boukhvalov D W, Katsnelson M I, Son Y W. Nano Lett., 2013, 13:3930.
[47] Wei N, Peng X, Xu Z. ACS Appl. Mater. Interfaces, 2014, 6:5877.
[48] Huang L, Li Y, Zhou Q, Yuan W, Shi G. Adv. Mater., 2015, 27:3797.
[49] Sheath P, Majumder M. Phil. Trans. R. Soc. A, 2016, 374:13.
[50] Liu H, Wang H, Zhang X. Adv. Mater., 2015, 27:249.
[51] Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. ACS Nano, 2013, 7:428.
[52] Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12:3602.
[53] Nicolai A, Sumpter B G, Meunier V. Phys. Chem. Chem. Phys., 2014, 16:8646.
[54] He Z, Zhou J, Lu X, Corry B. ACS Nano, 2013, 7:10148.
[55] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015, 10:459.
[56] Mi B. Science, 2014, 343:740.
[57] Chae H R, Lee J, Lee C H, Kim I C, Park P K. J. Membr. Sci., 2015, 483:128.
[58] Lee J, Jang J H, Chae H R, Lee S H, Lee C H, Park P K, Won Y J, Kim I C. J. Mater. Chem. A, 2015, 3:22053.
[59] Feng B, Xu K, Huang A. RSC Adv., 2017, 7:2211.
[60] Yang E, Kim C M, Song J H, Ki H, Ham M H, Kim I S. Carbon, 2017, 117:293.
[61] Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K. J. Mater. Chem. A, 2015, 3:5140.
[62] Chen X, Liu G, Zhang H, Fan Y. Chinese J. Chem. Eng., 2015, 23:1102.
[63] Zhao J, Zhu Y, Pan F, He G, Fang C, Cao K, Xing R, Jiang Z. J. Membr. Sci., 2015, 487:162.
[64] Choi W, Choi J, Bang J, Lee J H. ACS Appl. Mater. Interfaces, 2013, 5:12510.
[65] Perreault F, Tousley M E, Elimelech M. Environ. Sci. Technol. Lett., 2013, 1:71.
[66] Gao Y, Hu M, Mi B. J. Membr. Sci., 2014, 455:349.
[67] Yuan Y, Gao X, Wei Y, Wang X, Wang J, Zhang Y, Gao C. Desalination, 2017, 405:29.
[68] Ayyaru S, Ahn Y H. J. Membr. Sci., 2017, 525:210.
[69] Koolivand H, Sharif A, Kashani M R, Karimi M, Salooki M K, Semsarzadeh M A. J. Polym. Res., 2014, 21:599.
[70] Chen L, Lu S S, Wu S, Zhou J, Wang X M. J. Mol. Liq., 2015, 209:397.
[71] Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Grigorenko A N, Dryfe R A W, Radha B, Grigorieva I V, Geim A K. Science, 2016, 351:68.
[72] Akhavan O, Ghaderi E. ACS Nano, 2010, 4:5731.
[73] Huang Y, Li H, Wang L, Qiao Y, Tang C, Jung C, Yoon Y, Li S, Yu M. Adv. Mater. Interfaces, 2015, 2:1400433.
[74] Xie Q L, Zhang S S, Xiao Z Y, Hu X F, Hong Z, Yi R Z, Shao W Y, Wang Q Q. RSC Adv., 2017, 7:18755.
[75] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nat. Commun., 2013, 4:2979.
[76] Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Chem. Commun., 2014, 50:13089.
[77] Gao S J, Qin H L, Liu P P, Jin J. J. Mater. Chem. A, 2015, 3:6649.
[78] Han Y, Jiang Y, Gao C. ACS Appl. Mater. Interfaces, 2015, 7:8147.
[79] Goh K, Jiang W, Karahan H E, Zhai S, Wei L, Yu D, Fane A G, Wang R, Chen Y. Adv. Funct. Mater., 2015, 25:7348.
[80] Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Cao X, Wang B, Yang J. J. Membr. Sci., 2015, 487:152.
[81] Zheng Z, Grünker R, Feng X. Adv. Mater., 2016, 28:6529.
[82] Liu G, Jin W, Xu N. Angew. Chem. Int. Ed., 2016, 55:13384.
[83] Yue Q, Shao Z Z, Chang S L, Li J B. Nanoscale Res. Lett., 2013, 8:1.
[84] Berean K J, Ou J Z, Daeneke T, Carey B J, Nguyen E P, Wang Y C, Russo S P, Kaner R B, Kalantar-zadeh K. Small, 2015, 11:5035.
[85] Sun L W, Huang H B, Peng X S. Chem. Commun., 2013, 49:10718.
[86] Sun L W, Ying Y L, Huang H B, Song Z G, Mao Y Y, Xu Z P, Peng X S. ACS Nano, 2014, 8:6304.
[87] Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. J. Phys. Chem. Lett., 2015, 6:4026.
[88] Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. Angew. Chem. Int. Ed., 2017, 56:1825.
[89] Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Sci. Rep., 2017, 7:1598.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[7] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[8] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[9] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[10] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[11] Suqian Fu, Ying Wang, Kai Liu, Junhui He. Fabrication and Applications of Micro/Nano-Porous Polymer Films [J]. Progress in Chemistry, 2022, 34(2): 241-258.
[12] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[13] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.