中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1357-1365 DOI: 10.7536/PC170436 Previous Articles   Next Articles

• Review •

Cu2Se-Based Phonon Liquid Thermoelectric Materials

Xinmin He1,2, Ting Zhang1*, Fei Chen1, Jun Jiang3   

  1. 1. Department of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    2. Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51501014), the Scientific and Technological Program of Beijing Municipal Education Commission (No. KM201610017005), the Talents Project of Beijing Municipal Organization Department (No. 2015000020124G062), and the Undergraduates Research Training Program of Beijing (No. 2017J00059).
PDF ( 2040 ) Cited
Export

EndNote

Ris

BibTeX

Thermoelectric materials are one kind of functional materials which can directly realize the interconversion of thermal energy and electrical energy and have a promising application prospect in the fields of thermoelectric refrigeration and power generation. Currently, the low conversion efficiency limits the applications of thermoelectric materials. How to improve and optimize the thermoelectric figure of merit becomes very important in the current research. Cu2Se-based phonon liquid thermoelectric materials are one new type of high performance thermoelectric materials with extremely low thermal conductivity by their special crystal structure, the researches of which have greatly promoted the development of thermoelectric materials. Cu2Se undergoes a structural phase transition at high temperature, where the Cu atoms become the freely migrating liquid-like Cu ions. This special liquid-like behavior of Cu ions leads to the lower lattice thermal conductivity of materials by strong phonon scattering. In this paper, the Cu2Se-based phonon liquid thermoelectric materials are focused on. The basic properties, special crystal structure and applications of Cu2Se are summarized. The research achievements, preparation methods as well as the performance optimization means of Cu2Se-based thermoelectric materials are introduced elaborately. Finally, the future research aspects and new ideas for improving the performance of phonon liquid thermoelectric materials are also analyzed and prospected.
Contents
1 Introduction
2 Properties of Cu2Se and Cu2Se-based phonon liquid thermoelectric materials
2.1 Properties of Cu2Se
2.2 The concept of Cu2Se-based phonon liquid thermoelectric materials
3 Development of Cu2Se-based phonon liquid thermoelectric materials
3.1 Preparation methods of Cu2Se-based phonon liquid thermoelectric materials
3.2 Performance optimization means of Cu2Se-based phonon liquid thermoelectric materials
4 Conclusion

CLC Number: 

[1] Xi H X, Luo L G, Fraisse G. Renew. Sust. Energ. Rev., 2007, 11:923.
[2] Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sust. Energ. Rev., 2010, 14:312.
[3] Afshar O, Saidur R, Hasanuzzaman M, Jameel M. Renew. Sust. Energ. Rev., 2012, 16:5639.
[4] Tritt T M, Subramanian M A. MRS Bull., 2006, 31:188.
[5] Disalvo F J. Science, 1999, 285:703.
[6] Sales B C. Science, 2002, 295:1248.
[7] Bell L E. Science, 2008, 321:1457.
[8] Riffat S B, Ma X L. Appl. Therm. Eng., 2003, 23:913.
[9] Dai D, Zhou Y X, Liu J. Renew. Energ., 2011, 36:3530.
[10] Chen G K, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T. Int. Mater. Rev., 2003, 48:45.
[11] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J. J. Mater. Chem. A, 2013, 1:966.
[12] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J, Ren Z F. RSC Adv., 2013, 3:4951.
[13] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G. Adv. Mater., 2010, 22:3970.
[14] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M. Nature, 2012, 489:414.
[15] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Energ. Environ. Sci., 2011, 5:5147.
[16] Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke, D R. Chem. Mater., 2013, 25:2911.
[17] Tan G J, Zhao L D, Kanatzidis M G. Chem. Rev., 2016, 116:12123.
[18] Sootsman J R, Chung D Y, Kanatzidis M G. Angew. Chem. Int. Ed., 2009, 48:8616.
[19] Snyder G J, Toberer E S. Nat. Mater., 2008, 7:105.
[20] Lan Y C, Minnich A J, Chen G, Ren Z F. Adv. Funct. Mater., 2010, 20:357.
[21] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433.
[22] Chen S, Ren Z F. Mater. Today, 2013, 16:387.
[23] Qiu P F, Shi X, Chen L D. Energ. Stor. Mater., 2016, 3:85.
[24] Glazov V M, Pashinkin A S, Fedorov V A. Inorg. Mater., 2000, 36:641.
[25] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T, Snyder G J. Nat. Mater., 2012, 11:422.
[26] Tyagi K, Gahtori B, Bathula S, Auluck S, Dhar A. Appl. Phys. Lett., 2014, 105:173905.
[27] Yang L, Chen Z G, Han G, Hong M, Zou Y C, Zou J. Nano Energ., 2015, 16:367.
[28] Glen A S. CRC Handbook of Thermoelectrics, Boca Raton:CRC Press, 1995. 407.
[29] Mi J L, Zhao X B, Zhu T J, Ma J. J. Alloy. Compd., 2008, 452:225.
[30] Mi J L, Zhao X B, Zhu T J, Tu J P. Appl. Phys. Lett., 2007, 91:172116.
[31] Tang X F, Li H, Zhang Q J, Niino M, Goto T. J. Appl. Phys., 2006, 100:123702.
[32] Sales B C, Mandrus D, Williams R K. Science, 1996, 272:1325.
[33] 刘灰礼(Liu H L), 何颖(He Y), 史迅(Shi X), 郭向欣(Guo X X), 陈立东(Chen L D). 科学通报(Chinese Science Bulletin), 2013, 58(25):2603.
[34] Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H, Uher C. Adv. Mater., 2013, 25:6607.
[35] He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder G J. Adv. Mater., 2014, 26:3974.
[36] Xiao X X, Xie W J, Tang X F, Zhang Q J. Chinese Phys. B, 2011, 20:087201.
[37] Liu H L, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang W Q, Chen L D. Mater. Lett., 2013, 93:121.
[38] Skomorokhov A N, Trots D M, Knapp M, Bickulova N N, Fuess H. J. Alloy. Compd., 2006, 421:64.
[39] Chrissafis K, Paraskevopoulos K M, Manolikas C. J. Therm. Anal. Calorim., 2006, 84:195.
[40] Tyagi K, Gahtori B, Bathula S, Jayasimhadri M, Sharma S, Singh N K, Haranath D, Srivastava A K, Dhar A. Solid State Commun., 2015, 207:21.
[41] Suryanarayana C, Ivanov E, Boldyrev V V. Mater. Sci. Eng. A, 2001, 304:151.
[42] Ohtani T, Motoki M, Koh K, Ohshima K. Mater. Res. Bull., 1995, 30:1495.
[43] Machado K D, de Lima J C, Grandi T A, Campos C E M, Maurmann C E, Gasperini A A M, Souza S M, Pimenta A F. Acta Crystallogr. B, 2004, 60:282.
[44] Yu B, Liu W S, Chen S, Wang H, Wang H Z, Chen G, Ren Z F. Nano Energ., 2012, 1:472.
[45] 周曙(Zhou S), 方晓东(Fang X D), 邓赞红(Deng Z H), 李达(Li D).化学进展(Progress in Chemistry), 2010, 22(02/03):352.
[46] Liu K G, Liu H, Wang J Y, Shi L. J. Alloy. Compd., 2009, 484:674.
[47] Kumar P, Singh K, Srivastava O N. J. Cryst. Growth, 2010, 312:2804.
[48] Hessel C M, Pattani V P, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A. Nano Lett., 2011, 11:2560.
[49] Vinod T P, Jin X, Kim J K. Mater. Res. Bull., 2011, 46:340.
[50] Bakshi M S, Thakur P, Khullar P, Kayr G, Banipal T S. Cryst. Growth Des., 2010, 10:1813.
[51] 惠乐(Hui L), 唐子龙(Tang Z L), 罗绍华(Luo S H), 张中太(Zhang Z T).化学进展(Progress in Chemistry), 2007, 19(10):1460.
[52] Gurin V S, Prokopenko V B, Alexeenko A A, Wang S, Prokoshin P V. Mater. Sci. Eng. C, 2001, 15:93.
[53] Gurin V S, Alexeenko A A, Zolotovskaya S A, Yumashev K V. Materials Science and Engineering C, 2006, 26:952.
[54] Choi J W, Kang N, Yang H Y, Kim H J, Son S U. Chem. Mater., 2010, 22:3586.
[55] Pathan H M, Lokhande C D, Amalnerkar D P, Seth T. Appl. Surf. Sci., 2003, 211:48.
[56] Liu T C, Hu Y, Chang W B. Mater. Sci. Eng. B, 2014, 180:33.
[57] Yang M, Shen Z, Liu X, Wang W. J. Electron. Mater., 2016, 45:1974.
[58] Lee W, Myung N, Rajeshwar K, Lee C W. J. Electrochem. Sci. Technol., 2013, 4:140.
[59] Zhang L, He W Y, Chen X Y, Du Y, Zhang X, Shen Y H, Yang F C. Surf. Sci., 2015, 631:173.
[60] Ballikaya S, Chi H, Salvador J R, Uher C. J. Mater. Chem. A, 2013, 1:12478.
[61] Ji Y H, Ge Z H, Li Z D, Feng J. J. Alloy. Compd., 2016, 680:273.
[62] Tyagi K, Gahtori B, Bathula S, Jayasimhadri M, Singh N K, Sharma S, Haranath D, Srivastava A K, Dhar A. J. Phys. Chem. Solids, 2015, 81:100.
[63] Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S. Mater. Trans., 2012, 53:1212.
[64] Day T W, Borup K A, Zhang T S, Drymiotis F, Brown D R, Shi X, Chen L D, Iversen B B, Snyder G J. Mater. Renew. Sust. Energ., 2014, 3:26.
[65] Tewari G C, Tripathi T S, Rastogi A K. Z. Krist. Cryst. Mater., 2010, 225:471.
[66] Wang X B, Qiu P F, Zhang T S, Ren D D, Wu L H, Shi X, Yang J H, Chen L D. J. Mater. Chem. A, 2015, 3:13662.
[67] Yang J F, Chen S P, Du Z L, Liu X L, Cui J L. Dalton T., 2014, 43:15228.
[68] Fan J, Schnelle W, Antonyshyn I, Veremchuk I, Carrillo-Cabrera W, Shi X, Grinb Y, Chen L D. Dalton Trans., 2014, 43:16788.
[69] Ye Z X, Cho J Y, Tessema M M, Salvador J R, Waido R A, Wang H, Cai W. J. Solid State Chem., 2013, 201:262.
[70] Oudah M, Kleinke K M, Kleinke H. Inorg. Chem., 2015, 54:845.
[71] Zhong B, Zhang Y, Li W Q, Chen Z R, Cui J Y, Li W, Xie Y D, Hao Q, He Q Y. Appl. Phys. Lett., 2014, 105:123902.
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Xinmin He, Ting Zhang, Fei Chen, Jun Jiang. Applications of Graphene in Composite Thermoelectric Materials [J]. Progress in Chemistry, 2018, 30(4): 439-447.