中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1395-1406 DOI: 10.7536/PC170419 Previous Articles   Next Articles

• Review •

The Construction of Antibacterial Filtration Membranes:Current Strategies and Future Prospects

Caifeng Liu2,3, Zhongyun Liu1,3*, Yunxia Hu1,3*   

  1. 1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
    2. College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
    3. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476249) and the Key Project of Shandong Province (No. 2014GHY115021).
PDF ( 675 ) Cited
Export

EndNote

Ris

BibTeX

Membrane-based separation technologies, as one of the most effective and efficient technologies, have been widely used in many fields including wastewater treatment, seawater desalination, electronic, chemical and pharmaceutical industries, etc. due to their inherent advantages such as energy-saving and cost-effective features. Membrane fouling, however, especially the irreversible biofouling, has strong negative effects on the operational sustainability and the cost-efficiency of membrane process, thus hampering the application of membrane technology. In this review, the formation process and features of membrane biofouling are summerized, and then recent advances of antibacterial membranes development are reviewed. Three strategies including anti-adhesion strategy, active antibacterial strategy and programmed combination antibacterial strategy are highlighted for mitigating the membrane biofouling. In particular, the preparation method, antibacterial mechanism as well as practical problems of these three strategies are comprehensively discussed and analyzed. Finally, the future prospect and new insights are proposed to develop antibacterial membrane for future work.
Contents
1 Introduction
2 The formation process, characteristics and harmfulness of microbial fouling
3 The construction strategies of filtration membranes with antibacterial performance
3.1 The construction strategies of anti-adhesive filtration membranes with biofouling resistance
3.2 The construction strategies of active anti-bacterial filtration membranes with biofouling resistance
3.3 The construction strategies of programmed combination antibacterial filtration membranes with biofouling resistance
4 Conclusion and outlook

CLC Number: 

[1] Werber J R, Osuji C O, Elimelech M.Nat. Rev. Mater., 2016, 1(5):16018.
[2] Rana D, Matsuura T.Chem. Rev.,2010, 110:2448.
[3] Wang Z W, Ma J X, Tang C Y, Kimura K, Wang Q Y, Han X M. J. Membr. Sci., 2014, 468:276.
[4] Kang G D, Cao Y M.Water Res., 2012, 46(3):584.
[5] Lee N H, AmyG, Croué J P, Buisson H.Water Res., 2004, 38(20):4511.
[6] Kim D I, Kim J, Shon H K, Hong S.J. Membr. Sci., 2015, 483:34.
[7] Bernstein R, Belfer S, Freger V. Environ. Sci. Technol.,2011, 45(14):5973.
[8] Madhavan P, Hong P Y, Sougrat R, Nunes S P.ACS Appl. Mater. Interfaces, 2014, 6(21):18497.
[9] Davey M E, O'Toole G A. Microbiol. Mol. Biol. Rev., 2000, 64:847.
[10] de Faria A F, Martinez D S T,Meira S M M, de Moraes A C M,Brandelli A,Filho A G S, Alves O L. Colloids Surf., B, 2014, 113:115.
[11] van Houdt R, Michiels C W. Res. Microbiol., 2005, 156:626.
[12] 徐志康(Xu Z K), 王芳(Wang F), 仰云峰(Yang Y F). 膜科学与技术(Membrane Science and Technology), 2011, 3:69.
[13] 郑猛(Zheng M), 吴青芸(Wu Q Y), 周浩媛(Zhou H Y), 胡云霞(Hu Y X).膜科学与技术(Membrane Science and Technology), 2015, 1:123.
[14] Xu Z H, Ye S J, Zhang G L, Li W B, Gao C J, Shen C,Meng Q.J. Membr. Sci., 2016, 509:83.
[15] Piyadasa C, Ridgway H F, Yeager T R, Stewart M B PelekaniC, GrayS R. Orbell J D.Desalination, 2017, 418:19.
[16] Miller D J,Araujo P A, Correia P B, Ramsey M M, Kruithof J C, van Loosdrecht M C M, Freeman B D, Paul D R,Whiteley M,Vrouwenvelder J S. Water Res., 2012, 46(12):3737.
[17] Kim D G, Kang H, Han S, Kim H J, Lee J C.RSC Adv., 2013, 3:18071.
[18] Sileika T S, Kim H D,Maniak P,Messersmith P B.ACS Appl. Mater. Interfaces, 2011, 3(12):4602.
[19] Park K D, Kim Y S, Han D K, Kim Y H, Lee E H B,Suh H,Choi K S.Biomaterials, 1998, 19:851.
[20] Roosjen A,vander Mei H C,Busscher H J,Nord W. Langmuir, 2004, 20:10949.
[21] 刘红艳(Liu H Y),周健(Zhou J).化学进展(Progress in Chemistry), 2012, 11:2187.
[22] 慈吉良(Ci J L),康宏亮(Kang H L),刘晨光(Liu C G),贺爱华(He A H),刘瑞刚(Liu R G).化学进展(Progress in Chemistry), 2015, 9:1198.
[23] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K.J. Membr. Sci., 2010, 362(1/2):255.
[24] Brady R F, Singer I L.Biofouling, 2000, 15(1/3):73.
[25] Tsibouklis J, Graham P, Eaton P J, Smith J R,Nevell T G, Smart J D, Ewen R J. Macromolecules, 2000, 33:8460.
[26] Liu C X, Zhang D R, He Y, Zhao XS, Bai R B. J. Membr. Sci., 2010, 346:121.
[27] SaekiD, NagaoS, SawadaI,OhmukaiY, Maruyama T, Matsuyama H. J. Membr. Sci., 2013, 428:403.
[28] Liu F J, Qin B, HeL H, Song R. Carbohydr. Polym., 2009, 78(1):146.
[29] 朱军勇(Zhu J Y), 王琼柯(Wang Q K), 许欣(Xu X),刘绰绰(Liu Z Z), 刘金盾(Liu J D), 张亚涛(Zhang Y T). 工程科学(Chinese Journal of Engineering), 2014, 7:23.
[30] 杨皓程(Yang H C),陈一夫(Chen Y F),叶辰(Ye C),万灵书(Wang L S),徐志康(Xu Z K). 化学进展(Progress in Chemistry), 2015, 27(8):1014.
[31] Lin S, Chen L H, Huang LL, Cao S L, Luo X L, Liu K.Ind. Crops Prod., 2015, 70:395.
[32] Siedenbiedel F, Tiller J C. Polymers, 2012, 4(4):46.
[33] Carmona-Ribeiro A M, de Melo Carrasco L D.Int. J. Mol. Sci., 2013, 14(5):9906.
[34] 毛健康(Mao J K), 王灿(Wang C), 沈新元(Shen X Y). 膜科学与技术(Membrane Science and Technology), 2009, 5:44.
[35] Lewis K, Klibanov A M. Trends Biotechnol., 2005, 23(7):343.
[36] Bromberg L, Hatton T A. Polymer, 2007, 48(26):7490.
[37] Kenawy E R, Worley S D, Broughton R.Biomacromolecules, 2007, 8(5):1359.
[38] Meng J Q, Zhang X, Ni L, Tang Z, Zhang Y F, Zhang Y J, Zhang W. Desalination, 2015, 359:156.
[39] Nikkola J,Liu X,Li Y,Raulio M,Alakomi H L,Wei J,Tang C Y.J. Membr. Sci., 2013, 444:192.
[40] Rai M,Yadav A, Gade A. Biotechnol. Adv., 2009, 27(1):76.
[41] 邓尧(Deng Y), 黄肖容(Huang X R), 邬晓龄(Wu X L). 材料导报(Materials Review), 2012, 15:84.
[42] Rodrigues A G, Ping L Y,Marcato P D,Alves O L, Silva M C P, Ruiz R C,MeloI S,Tasic L,de Souza A O.Appl. Microbiol. Biotechnol., 2013, 97(2):775.
[43] Zodrow K, Brunet L, Mahendra S, Li D, Zhang A N, Li Q L, Alvarez P J J. Water Res., 2009, 43(3):715.
[44] Gunawan P, Guan C, Song X H, Zhang Q Y, Leong S S J,Tang C Y, Chen Y, Chan-Park M B, Chang M W, Wang K, Xu R.ACS Nano,2011, 5(12):10033.
[45] Li W R,Xie X B, Shi Q S, Zeng H Y, Ouyang Y S,Chen Y B.Appl. Microbiol. Biotechnol., 2010, 85(4):1115.
[46] Huang S Y.ACS Appl. Mater. Interfaces, 2014, 6:17144
[47] Karkhanechi H, Takagi R,Matsuyama H. Desalination, 2014,336:87.
[48] Xi Z Y,Xu Y Y, Zhu L P, Wang Y, Zhu B K.J. Membr. Sci., 2009, 327(1/2):244.
[49] Liu Z Y, Hu Y X.ACS Appl. Mater. Interfaces, 2016, 8(33):21666.
[50] Ben-Sasson M, Zodrow K R,Qi G G, Kang Y, Giannelis E P, Elimelech M. Environ. Sci. Technol., 2014, 48(1):384.
[51] Hong R, Kang T Y,Michels C A,Gadura N.Appl. Environ. Microbiol., 2012, 78(6):1776.
[52] Grass G,Rensing C,Solioz M.Appl. Environ. Microbiol.,2011, 77(5):1541.
[53] Xu Z H, Ye S J, Fan Z, Ren F H, Gao C J, Li Q B, Li G Q, Zhang G L. J.Nanopart Res., 2015, 17:409.
[54] Karkhanechi H, Takagi R,Ohmukai Y, Matsuyama H.Desalination,2013,325:40.
[55] 陈培培(Chen P P), 徐佳(Xu Jia), 蒋钰烨(Jiang Y Y), 冯晨晨(Feng C C), 高从堦(Gao C J).高等学校化学学报(Chemical Research in Chinese Universities), 2013, 34:739.
[56] Xu J, Zhang L L,Gao X L,BieH Y, Fu Y P, GaoC J.J. Membr. Sci., 2015,491:28.
[57] Qiu J H, Zhang Y W, Zhang Y T, Zhang H Q, LiuJ D.J. Colloid Interface Sci., 2011,354(1):152.
[58] Liu Z Y, Hu Y X, Liu C F, Zhou Z Y.Chem. Commun., 2016, 52(82):12245.
[59] Ji H W, Sun H J, Qu X G.Adv. Drug Delivery Rev., 2016, 105:176.
[60] Liu S B, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R R,Kong J, Chen Y.ACS Nano, 2011, 95:6971.
[61] Perreault F,Tousley M E,Elimelech M. Environ. Sci. Technol. Lett., 2014, 1(1):71.
[62] Huang X W, Marsh K L, McVerry B T, Hoek E M V, Kaner R B.ACS Appl. Mater. Interfaces,2016, 8(23):14334.
[63] Cai X, Lin M S, Tan S Z, Mai W J, Zhang Y M, Liang Z W, Lin Z D, Zhang X J. Carbon, 2012, 50(10):3407.
[64] Mahmoudi E, Ng L Y, Ba-Abbad M M,Mohammad A W. Chem. Eng. J., 2015, 277:1.
[65] DamodarR A, You S J, Chou H H.J. Hazard. Mater., 2009, 172(2/3):1321.
[66] Ni L, Meng J Q, Li X G, Zhang Y F.J. Membr. Sci., 2014, 451:205.
[67] Pan Y, Ma L J, Lin S, Zhang Y F, Cheng B W, Meng J Q.J. Mater. Chem. A, 2016, 4(41):15945.
[68] Ye G, LeeJ H,Perreault F,Elimelech M.ACS Appl. Mater. Interfaces, 2015, 7(41):23069.
[1] Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*. Synthesis of Biobased Furan-Containing Polyamides [J]. Progress in Chemistry, 2018, 30(12): 1836-1843.
[2] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[3] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[4] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[5] Wanru Zhao, Xin Hu, Ning Zhu, Zheng Fang, Kai Guo. Ionic Polymerizations in Continuous Flow [J]. Progress in Chemistry, 2018, 30(9): 1330-1340.
[6] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[7] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[8] Fengyang Zhao, Yongjian Jiang, Tao Liu, Chunchun Ye. Nanofiltration Membrane Based on Novel Materials [J]. Progress in Chemistry, 2018, 30(7): 1013-1027.
[9] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[10] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[11] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[12] Zhirui Dong, Weijun Tong*. Shear-Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(2/3): 190-197.
[13] Hao Zhang, Fang Xu, Heying Wang, Tao Jiang, Zhi Ma. Controlled Synthesis of New Polymethylene-Based Copolymers [J]. Progress in Chemistry, 2018, 30(2/3): 179-189.
[14] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[15] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.