中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1195-1205 DOI: 10.7536/PC170411 Previous Articles   Next Articles

• Review •

Biological Carrier for Tumor Immunotherapy

Xubo Yuan, Jin Zhao, Lixia Long, Xin Hou, Xubo Yuan*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51473119).
PDF ( 1205 ) Cited
Export

EndNote

Ris

BibTeX

Aimed at acquiring long-term immune memory, prevention and tumor killing, immunotherapy is a new method for tumor therapy by introducing and enhancing the antigen specific immune response. Compared with the traditional chemotherapy, tumor immunotherapy has less side effects and shows better clinical response. From the original antigen vaccine to the current development of adoptive cell therapy such as chimeric antigen receptor T lymphocytes (CAR-T), the treatment effect has been improved. However, some problems still exist in immunotherapies:the poor targeting property of therapeutic protein and nucleic acid, the difficulty in crossing the physical barrier, the inclination to be degraded, as well as the potential toxicity caused by immunogenicity, all of which require further improvement for better immunotherapeutic strategy. As effective carries for loading proteins and nucleic acids, a variety of biomedical materials are used to solve the above problems. At present, the biological carriers contain several functions in immunotherapy:(1) reduce the degradation of therapeutic substances such as protein and nucleic acid; (2) enhance targeting of conditioned drugs; (3) assist to cross the physical barrier; (4) reduce systemic side effects; (5) achieve persistent release. In this article, the latest development of new biomedical material carriers is introduced, and the existing problems and the possible challenges are also put forward.
Contents
1 Introduction
2 Tumor antigen vaccine
3 Cytokine immunotherapy
4 Gene immunotherapy
4.1 Polymer carrier
4.2 Metal and inorganic nano-carrier
5 Monoclonal antibody immunotherapy
5.1 Polymer nanoparticle carrier
5.2 Injectable hydrogel carrier
6 Adoptive immunotherapy
6.1 Superparamagnetic iron oxide nanoparticle carrier
6.2 Gel carrier
7 Conclusion

CLC Number: 

[1] Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. CA Cancer J. Clin., 2011, 61:69.
[2] Tang H D, Qiao J, Fu Y X. Cancer Lett., 2016, 370:85.
[3] Restifo N P, Smyth M J, Snyder A. Nat. Rev. Cancer, 2016, 16:121.
[4] Steinman R M, Banchereau J. Nature, 2007, 449:419.
[5] Palucka K, Banchereau J. Curr. Opin. Immunol., 2013, 25:396.
[6] Schreiber T H, Raez L, Rosenblatt J D, Podack E R. Semin. Immunol., 2010, 22:105.
[7] Rosenthal J A, Chen L X, Baker J L, Putnam D, DeLisa M P. Curr. Opin. Biotechnol., 2014, 28:51.
[8] Moon J J, Suh H, Bershteyn A, Stephan M T, Liu H P, Huang B, Sohail M, Luo S, Um S H, Khant H, Goodwin J T, Ramos J, Chiu W, Irvine D J. Nat. Mater., 2011, 10:243.
[9] Liu Q, Jia J L, Yang T, Fan Q Z, Wang L Y, Ma G H. Small, 2016, 12:1744.
[10] Rosalia R A, Cruz L J, van Duikeren S, Tromp A T, Silva A L, Jiskoot W, de Gruijl T, Lowik C, Oostendorp J, van der Burg S H, Ossendorp F. Biomaterials, 2015, 40:88.
[11] Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. ACS Nano, 2015, 9:16.
[12] Hamdy S, Haddadi A, Hung R W, Lavasanifar A. Adv. Drug Deliv. Rev., 2011, 63:943.
[13] Hassan H A F M, Smyth L, Wang J T W, Costa P M, Ratnasothy K, Diebold S S, Lombardi G, Al-Jamal K T. Biomaterials, 2016, 104:310.
[14] Tacken P J, Zeelenberg I S, Cruz L J, van Hout-Kuijer M A, van de Glind G, Fokkink R G, Lambeck A J A, Figdor C G. Blood, 2011, 118:6836.
[15] 张茜(Zhang Q), 朱艳红(Zhu Y H), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2015, 27(2/3):275.
[16] Dranoff G. Nat. Rev. Cancer, 2004, 4:11.
[17] Parkhurst M R, Riley J P, Dudley M E, Rosenberg S A. Clin. Cancer Res., 2011, 17:6287.
[18] Wu J J, Tang C, Yin C H. Acta Biomater., 2017, 47:81.
[19] Deo V K, Kato T, Park E Y. J. Pharm. Sci., 2016, 105:1614.
[20] Klibanov A L, Maruyama K, Torchilin V P, Huang L. FEBS Lett., 1990, 268:235.
[21] Park J, Wrzesinski S H, Stern E, Look M, Criscione J, Ragheb R, Jay S M, Demento S L, Agawu A, Licona Limon P, Ferrandino A F, Gonzalez D, Habermann A, Flavell R A, Fahmy T M. Nat. Mater., 2012, 11:895.
[22] Mundargi R C, Babu V R, Rangaswamy V, Patel P, Aminabhavi T M. J. Controlled Release, 2008, 125:193.
[23] 廖荣强(Liao R Q), 刘满朔(Liu M S), 廖霞俐(Liao X L), 杨波(Yang B). 化学进展(Progress in Chemistry), 2015, 27(1):79.
[24] Cruz L J, Tacken P J, Fokkink R, Figdor C G. Biomaterials, 2011, 32:6791.
[25] Seo S H, Han H D, Noh K H, Kim T W, Son S W. Clin. Exp. Metastasis, 2009, 26:179.
[26] Li S D, Huang L. J. Controlled Release, 2007, 123:181.
[27] Park T G, Jeong J H, Kim S W. Adv. Drug Deliv. Rev., 2006, 58:467.
[28] Christensen L V, Chang C W, Won J K, Sung W K, Zhong Z Y, Lin C, Engbersen J F J, Feijen J. Bioconjugate Chem., 2006, 17:1233.
[29] Hatakeyama H, Murata M, Sato Y, Takahashi M, Minakawa N, Matsuda A, Harashima H. J. Controlled Release, 2014, 173:43.
[30] Wang H Y, Jiang Y F, Peng H G, Chen Y Z, Zhu P Z, Huang Y Z. Adv. Drug Deliv. Rev., 2015, 81:142.
[31] Lungwitz U, Breunig M, Blunk T, Göpferich A. Eur. J. Pharm. Biopharm., 2005, 60:247.
[32] Peng C H, Cherng J Y, Chiou G Y, Chen Y C, Chien C H, Kao C L, Chang Y L, Chien Y, Chen L K, Liu J H, Chen S J, Chiou S H. Biomaterials, 2011, 32:9077.
[33] Lai S K, Suk J S, Pace A, Wang Y Y, Yang M, Mert O, Chen J, Kim J, Hanes J. Biomaterials., 2011, 32:6285.
[34] Neu M, Fischer D, Kissel T. J. Gene Med., 2005, 7:992.
[35] Kim A J, Boylan N J, Suk J S, Hwangbo M, Yu T, Schuster B S, Cebotaru L, Lesniak W G, Oh J S, Adstamongkonkul P, Choi A Y, Kannan R M, Hanes J. Angew. Chem. Int. Ed., 2013, 52:3985.
[36] Chiou G Y, Cherng J Y, Hsu H S, Wang M L, Tsai C M, Lu K H, Chien Y, Hung S C, Chen Y W, Wong C I, Tseng L M, Huang P I, Yu C C, Hsu W H, Chiou S H. J. Controlled Release, 2012, 159:240.
[37] Xu C F, Zhang H B, Sun C Y, Liu Y, Shen S, Yang X Z, Zhu Y H, Wang J. Biomaterials, 2016, 88:48.
[38] Kumar M N V R, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chem. Rev., 2004, 104:6017.
[39] Katas H, Alpar H O. J. Controlled Release, 2006, 115:216.
[40] Lee D W, Yun K S, Ban H S, Choe W, Lee S K, Lee K Y. J. Controlled Release, 2009, 139:146.
[41] Lee J, Yun K S, Choi C S, Shin S H, Ban H S, Rhim T, Lee S K, Lee K Y. Bioconjugate Chem., 2012, 23:1174.
[42] Liu C Y, Wen J, Meng Y B, Zhang K L, Zhu J L, Ren Y, Qian X M, Yuan X B, Lu Y F, Kang C. Adv. Mater., 2015, 27:292.
[43] Qian X M, Long L X, Shi Z D, Liu C Y, Qiu M Z, Sheng J, Pu P Y, Yuan X B, Ren Y, Kang C S. Biomaterials, 2014, 35:2322.
[44] Vallhov H, Kupferschmidt N, Gabrielsson S, Paulie S, Strømme M, Garcia-Bennett A E, Scheynius A. Small, 2012, 8:2116.
[45] Liu T L, Liu H Y, Fu C H, Li L L, Chen D, Zhang Y Q, Tang F Q. J. Colloid Interface Sci., 2013, 400:168.
[46] Almeida J P M, Figueroa E R, Drezek R A. Nanomedicine, 2014, 10:503.
[47] Wang Y R, Wang Y, Kang N, Liu Y L, Shan W J, Bi S L, Ren L, Zhuang G H. Nanoscale Res. Lett., 2016, 11:1.
[48] Lee I H, Kwon H K, An S, Kim D, Kim S, Yu M K, Lee J H, Lee T S, Im S H, Jon S. Angew. Chem. Int. Ed. Engl., 2012, 51:8800.
[49] Krieg A M. Nat. Rev. Drug Discov., 2006, 5:471.
[50] Fabbro C, Ali-Boucetta H, Ros T D, Kostarelos K, Bianco A, Prato M. Chem. Commun., 2012, 48:3911.
[51] Han Z J, Ostrikov K, Tan C M, Tay B K, Peel S A F. Nanotechnology, 2011, 22:295712.
[52] Costa P M, Bourgognon M, Wang J T W, Al-Jamal K T. J. Controlled Release, 2016, 241:200.
[53] de Faria P C, dos Santos L I, Coelho J P, Ribeiro H B, Pimenta M A, Ladeira L O, Gomes D A, Furtado C A, Gazzinelli R T. Nano Lett., 2014, 14:5458.
[54] Marchesan S, Prato M. Chem. Commun., 2015, 51:4347.
[55] Liu Z, Tabakman S, Welsher K, Dai H J. Nano Res., 2009, 2:85.
[56] He C L, Tang Z H, Tian H Y, Chen X S. Adv. Drug Deliv. Rev., 2016, 98:64.
[57] Scott A M, Wolchok J D, Old L J. Nat. Rev. Cancer, 2012, 12:278.
[58] LoRusso P M, Weiss D, Guardino E, Girish S, Sliwkowski M X. Clin. Cancer Res., 2011, 17:6437.
[59] Hu C M J, Aryal S, Zhang L F. Ther. Deliv., 2010, 1:323.
[60] Jiang T Y, Mo R, Bellotti A, Zhou J P, Gu Z. Adv. Funct. Mater., 2014, 24:2295.
[61] Lee A L Z, Ng V W L, Gao S J, Hedrick J L, Yang Y Y. Adv. Funct. Mater., 2014, 24:1538.
[62] Aoki M, Okudaira K, Haga M, Nishigaki R, Hayashi M. Drug Metab. Dispos., 2010, 38:1183.
[63] Lee A L Z, Wang Y, Cheng H Y, Pervaiz S, Yang Y Y. Biomaterials, 2009, 30:919.
[64] Sun B F, Feng S S. Nanomedicine, 2009, 4:431.
[65] Shi M, Ho K, Keating A, Shoichet M S. Adv. Funct. Mater., 2009, 19:1689.
[66] Mi Y, Zhao J, Feng S S. J. Controlled Release, 2013, 169:185.
[67] Kedar U, Phutane P, Shidhaye S, Kadam V. Nanomedicine, 2010, 6:714
[68] Perche F, Patel N R, Torchilin V P. J. Controlled Release, 2012, 164:95.
[69] Li W, Zhao H, Qian W Z, Li H F, Zhang L, Ye Z W, Zhang G, Xia M, Li J F, Gao J, Li B H, Kou G, Dai J X, Wang H, Guo Y J. Biomaterials, 2012, 33:5362.
[70] Akagi T, Baba M, Akashi M. Advances in Polymer Science. NY:Springer-Verlag Berlin Heidelberg, 2011. 247.
[71] Li Y K, Fang M, Zhang J, Wang J, Song Y, Shi J, Li W, Wu G, Ren J H, Wang Z, Zou W P, Wang L. Oncoimmunology, 2016, 5:e1074374.
[72] Rosenberg S A, Restifo N P. Science, 2015, 348:62.
[73] Turtle C J, Hanafi L A, Berger C, Gooley T A, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto T M, Robinson E, Steevens N, Chaney C, Soma L, Chen X Y, Yeung C, Wood B, Li D, Cao J H, Heimfeld S, Jensen M, Riddell S R, Maloney D G. J. Clin. Oncol., 2015, 33:3006.
[74] Ager A, Watson H A, Wehenkel S C, Mohammed R N. Biochem. Soc. Trans., 2016, 44:377.
[75] Kakarla S, Gottschalk S. Cancer J., 2014, 20:151.
[76] Adusumilli P S, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, Jones D R, Sadelain M. Sci. Transl. Med., 2014, 6:261ra151.
[77] Gilham D E, Debets R, Pule M, Hawkins R E, Abken H. Trends Mol. Med., 2012, 18:377.
[78] Melero I, Rouzaut A, Motz G T, Coukos G. Cancer Discov., 2014, 4:522.
[79] Melero I, Hervas-Stubbs S, Glennie M, Pardoll D M, Chen L P. Nat. Rev. Cancer, 2007, 7:95.
[80] Jin H L, Qian Y, Dai Y F, Qiao S, Huang C, Lu L S, Luo Q M, Chen J, Zhang Z H. Theranostics, 2016, 6:2000.
[81] Stephan S B, Taber A M, Jileaeva I, Pegues E P, Sentman C L, Stephan M T. Nat. Biotechnol., 2015, 33:97.
[82] Matsuno R, Ishihara K. Nano Today, 2011, 6:61.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[7] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[10] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[13] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[14] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[15] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
Viewed
Full text


Abstract

Biological Carrier for Tumor Immunotherapy