中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 757-765 DOI: 10.7536/PC170351 Previous Articles   Next Articles

• Review •

Hydrophobic Association Hydrogel

Na Niu, Zhiying Li, Tingting Gao, Yudong Liu, Xiaoli Liu, Fengqi Liu*   

  1. College of Chemistry, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174053).
PDF ( 3087 ) Cited
Export

EndNote

Ris

BibTeX

Hydrophobic association hydrogels (HA-gels) have physical crosslinking networks, which are generated via hydrophobic association. The synthesis methods, structure optimization, property modulation and applications of HA-gels are becoming hot topics in gel materials. This is because HA-gels have many merits such as high mechanical strength, self healing, secondary processing and so on compared with chemical crosslinking hydrogels. In addition, as network crosslinking points, hydrophobic association domains contain dynamic and reversible association-dissociation balance (RADB). It is worth mentioning that, RADB is not only the highlight of HA-gels, but also the hitting-point and the key of network construct, mechanism study and performance improvement. With advantages of high sensitivity, smart response and biocompatibility, HA-gels have shown promising applications in a lot of fields, including smart materials, biology, medicine, and so on. Therefore, in the review, we begin with structure composition of HA-gels, introduce different structure and synthesis methods of them, and then summarize the cause and mechanism of the differences in properties. At last, the present research status is concluded and the application prospect of HA-gels is outlooked as well.
Contents
1 Introduction
2 Structural composition
2.1 Block hydrophobic association hydrogels
2.2 Coiled-coil peptides hydrophobic association hydrogels
3 Synthesis methods
3.1 Free radical polymerization
3.2 Chemical modification on matrix
4 Performance evaluation
4.1 Mechanical property
4.2 Swelling behavior
4.3 Self healing property
5 Promising applications
5.1 Biology and medicine
5.2 Smart materials
5.3 Oilfield exploitation
6 Conclusion and outlook

CLC Number: 

[1] Anfinsen C B, Anson M L, Bailey K, Edsall J T, Kauzmann W. Adv. Pro. Chem.. New York:McGraw-Hill, 1959. 14.
[2] Evani, S, Rose G. Polym. Mater. Sci. Eng.,1987, 57:477.
[3] Maechling-Strasser C, François J, Clouet F, Tripette C, Polymer, 1992, 33(3):627.
[4] Yekta A, Duhamel J, Brochard P, Adiwidjaja H, Winnik M A. Macromolecules, 1993, 26(8):82.
[5] Annable T, Ettelaie R. Macromolecules, 1994, 27(20):4372.
[6] Uemura Y, Macdonald P M. Macromolecules, 1996, 29(1):63.
[7] Nagashima K, Strashko V, Macdonald P M, Jenkins R D, Bassett D R. Macromolecules, 2000, 33(25):9329.
[8] Jiang G Q, Liu C, Liu X L, Zhang G H, Yang M, Liu F Q. Macromol. Mater. Eng., 2009,294:815.
[9] Bromberg L. Macromolecules, 1998, 31(18):6148.
[10] Regalado E J, Selb J, Candau F. Macromolecules, 1999, 32(25):8580.
[11] Noda T, Hashidzume A, Morishima Y. Langmuir, 2001, 17(19):5984.
[12] Grattoni C A, Al-Sharji H H, Yang C H, Muggeridge A H, Zimmerman R W. J. Colloid Interface Sci., 2001, 240(2):601.
[13] Ma J T, Cui P, Zhao L, Huang R H. Eur Polym. J., 2002, 38(8):1627.
[14] Shashkina Y A, Zaroslov Y D, Smirnov V A, Philippova O E, Khokhlov A R, Pryakhina T A, Churochkina N A. Polymer, 2003, 44(8):2289.
[15] Geng Y H, Lin X Y, Pan P J, Shan G R, Bao Y Z, Song Y H, Wu Z L, Zheng Q. Polymer, 2016, 100:60.
[16] Owusu-Nkwantabisah S, Gillmor J R, Switalski S C, Slater G L. J. Appl. Polym. Sci., 2017, 134(19):44800.
[17] Ghelichi M, Qazvini N T. Soft Matter, 2016, 12(20):4611.
[18] Gao T T, Niu N, Liu Y D, Liu X, Gao G L, Liu F Q. RSC Adv., 2016, 6(49):43463.
[19] Shim W S, Yoo J S, Bae Y H, Lee D S. Biomacromolecules, 2005, 6:2930.
[20] Abdurrahmanoglu S, Cilingir M, Okay O. Polymer, 2011, 52(3):694.
[21] Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44(12):4997.
[22] Tuncaboylu D C, Sahin M, Argun A, Oppermann W, Okay O. Macromolecules, 2012, 45(4):1991.
[23] Akay G, Hassanraeisi A, Tuncaboylu D C, Orakdogen N, Abdurrahmanoglu S, Oppermann W, Okay O. Soft Matter, 2013, 9(7):2254.
[24] Hao J K., Weiss R A. Macromolecules, 2011, 44(23):9390.
[25] Liu C, Yu J F, Jiang G Q, Liu X L, Li Z Y, Gao G, Liu F Q. J. Mater. Sci., 2012, 48(2):774.
[26] Yang M, Liu C, Li Z Y, Gao G, Liu F Q. Macromolecules, 2010, 43(24):10645.
[27] Philippova O E, Hourdet D, Audebert R, Khokhlov A R. Macromolecules, 1997, 30(26):8278.
[28] Tae G Y, Kornfield J A, Hubbell J A, Johannsmann D, Hogenesch T E. Macromolecules, 2001, 34(18):6409.
[29] Lupas A. Trends Biochem. Sci., 1996, 21:375.
[30] Kopecek J, Yang J Y. Angew. Chem. Int. Ed., 2012, 51:7396.
[31] Parry D A D, Fraser R D B, Squire J M. J. Struct. Biol., 2008, 163:258.
[32] Woolfson D N. Adv. Protein Chem., 2005, 70:79.
[33] Oakley M G, Hollenbeck J J. Curr. Opin. Struct. Biol., 2001, 11:450
[34] DiMarco R L, Heilshorn S C. Adv. Mater., 2012, 24:3923.
[35] Petka W A, Harden J L, McGrath K P, Wirtz D, Tirrell D A. Science, 1998, 281:389.
[36] Kennedy S B, deAzevedo E R, Petka W A, Russell T P, Tirrell D A, Hong M. Macromolecules, 2001, 34:8675.
[37] Olsen B D, Kornfield J A, Tirrell D A. Macromolecules, 2010, 43:9094.
[38] Liu Y, Liu B, Riesberg J J, Shen W. Macromol. Biosci., 2011, 11:1325.
[39] Liu B, Liu Y, Lewis A K, Shen W. Biomaterials, 2010, 31:4918.
[40] Topp S, Prasad V, Cianci G C, Weeks E R, Gallivan J P. J. Am. Chem. Soc., 2006, 128:13994.
[41] Oshea E K, Rutkowski R, Stafford W F, Kim P S. Science, 1989, 245:646.
[42] Banwell E F, Abelardo E S, Adams D J, Birchall M A, Corrigan A, Donald A M, Kirkland M, Serpell L C, Butler M F, Woolfson D N. Nat. Mater., 2009, 8:596.
[43] Bock J, Jr P L V, Pace S J, Siano D B, Schulz D N, Turner S R. Hydrophobically Associating Polymers. US:Springer, 1988. 147.
[44] Ezzell S A, McCormick C L. Macromolecules, 1992, 25(7):1881.
[45] Effing J J, McLennan I J, Kwak J C T. J. Phys. Chem., 1994, 98(10):2499.
[46] Evani S. UP4432881, 1984.
[47] Schulz D N, Kaladas J J, Maurer J J, Bock J, Pace S J, Schulz W W. Polymer, 1987, 28(12):2110.
[48] Peiffer D G. Polymer, 1990, 31(12):2353.
[49] Chang Y H, McCormick C L. Macromolecules, 1993, 26(22):6121.
[50] Wang G J, Engberts J B F N. Langmuir, 1995, 11(10):3856.
[51] Kramer M C, Steger J R, Hu Y X, McCormick C L. Macromolecules, 1996, 29(6):1992.
[52] Voorhaar L, De Meyer B, Prez F D, Hoogenboom R. Macromol. Rapid Commun., 2016, 37(20):1682.
[53] Liang Z, Gao T T, Xu J N, Li Z Y, Liu X L, Liu F Q. Chem. Res. Chin. Univ., 2015, 31(4):633.
[54] Jiang G Q, Liu C, Liu X L, Zhang G H, Yang M, Chen Q R, Liu F Q. J. Macromol. Sci. Part A:Pure Appl. Chem., 2010, 47(4):335.
[55] 陈清瑞(Chen Q R), 刘畅(Liu C), 姜国庆(Jiang G Q), 刘晓丽(Liu X L), 杨猛(Yang M), 刘凤岐(Liu F Q). 高分子学报(Acta Polymerica Sinica), 2010, 1(6):797.
[56] Song P A, Zhang Y F, Kuang J Z. J. Mater. Sci., 2007, 42(8):2775.
[57] White B H B, Kwak J C T. Colloid Polym. Sci., 1999, 277(8):785.
[58] Mullarney M P, Seery T A P, Weiss R A. Polymer, 2006, 47(11):3845.
[59] Sheikholeslami P, Muirhead B, Baek D S H, Wang H, Zhao X, Sivakumaran D, Boyd S, Sheardown H, Hoare T. Exp. Eye Res., 2015, 137:18.
[60] Zhang J F, Muirhead B, Dodd M, Liu L N, Xu F, Mangiacotte N, Hoare T, Sheardown H. Biomacromolecules, 2016, 17(11):3648.
[61] Fan Y J, Zhou W F, Yasin A, Li H Z, Yang H Y. Soft Matter, 2015, 11(21):4218.
[62] 王云芳(Wang Y F), 孔瑛(Kong Y), 辛伟(Xin W), 杨金荣(Yang J R), 史德清(Shi D Q). 高分子材料科学与工程(Polymer Materials Science & Engineering), 2004, 20(6):106.
[63] 丁伟(Ding W), 刘海燕(Liu H Y), 于涛(Yu T), 曲广淼(Qu G M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29(4):868.
[1] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[2] Rui Hou, Guiqun Li, Yan Zhang, Mingjun Li, Guiming Zhou, Xiaoming Chai. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs [J]. Progress in Chemistry, 2019, 31(5): 690-698.
[3] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[4] Wei Cunqian, Yan Jie, Tang Hao, Zhang Qinghua, Zhan Xiaoli, Chen Fengqiu. Fabrication and Application of Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2016, 28(1): 9-17.
[5] Guo Kun, Zhang Dali, Zhang Sheng, Li Bangjing. Research Progress and Applications of Self-Healing Conductive Materials [J]. Progress in Chemistry, 2015, 27(6): 633-640.
[6] An Guangming, Ling Shiquan, Wang Zhiwei, Luan Lin, Wu Tianzhun. Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure [J]. Progress in Chemistry, 2015, 27(12): 1705-1713.
[7] Li Sichao, Han Peng, Xu Huaping. Self-Healing Polymeric Materials [J]. Progress in Chemistry, 2012, 24(07): 1346-1352.
[8] Qi Hengzhi, Zhao Yunhui, Zhu Kongying, Yuan Xiaoyan. Research Progresses in Self-Healing Polymer Materials [J]. Progress in Chemistry, 2011, 23(12): 2560-2567.
[9] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.
Viewed
Full text


Abstract

Hydrophobic Association Hydrogel