中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 502-512 DOI: 10.7536/PC170350 Previous Articles   Next Articles

• Review •

Smart Drug and Gene Co-Delivery System for Cancer Therapy

Shuai Zhou, Wei Chen, Zilin Xiao, Sheng Ye, Chendi Ding, Jiajun Fu*   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51672133) and the Natural Science Foundation of Jiangsu Province (No.BK20161496).
PDF ( 1930 ) Cited
Export

EndNote

Ris

BibTeX

Cancer is one of the major diseases seriously threating human health. Chemotherapy plays a crucial role in clinical cancer treatment at present. However, due to the complexity of cancer pathogenesis mechanism and heterogeneity, single drug therapy usually can't afford to effectively suppress cancer progression and migration. Thus, combination therapy involving multiple anticancer mechanisms has been becoming an increasingly important therapeutic strategy in clinical practice. Cancer treatment with nanocarriers which allow for the co-delivery of both drug and gene has been the focus of recent active research in biomedicine field because of their ability to enhance anticancer efficacy and reduce adverse side effects. This article reviews the recent advances on smart drug and gene co-delivery carriers. Various co-delivery carriers are classified on the basis of material type, and the corresponding preparation methods and action mechanisms are introduced respectively in this review. These smart co-delivery carriers will undergo a structural or conformational change upon exposure to intrinsic stimulating factors of tumor microenvironment (e.g. pH, glutathione, enzyme) or exogenous stimuli (e.g. temperature, ultrasound), resulting in the controlled release of both drug and gene to generate synergistic therapeutic effects against cancer. In addition, some personal perspectives on this field are also presented.
Contents
1 Introduction
2 Inorganic nanoparticle-based smart drug and gene co-delivery carriers
2.1 Mesoporous silica nanoparticle-based co-delivery carriers
2.2 Other types of inorganic nanoparticle-based co-delivery carriers
3 Polymer-based smart drug and gene co-delivery carriers
3.1 Polymer composite-based co-delivery carriers
3.2 Polymeric micelle and vesicle-based co-delivery carriers
3.3 Nanogel-based co-delivery carriers
4 Liposome-based smart drug and gene co-delivery carriers
4.1 pH-responsive liposomes
4.2 Thermo-responsive liposomes
4.3 Other stimuli responsive liposomes
5 Conclusion

CLC Number: 

[1] Torre L A, Bray F, Siegel R L, Ferlay J, Lortet T J, Jemal A. CA Cancer J. Clin., 2015, 65:87.
[2] Wang F Z, Xing L, Tang Z, Lu J J, Cui P F, Qiao J B, Jiang L, Jiang H L, Zong L. Mol. Pharmaceutics, 2016, 13:1298.
[3] Li Y M, Xu B, Bai T, Liu W G. Biomaterials, 2015, 55:12.
[4] Kim Y D, Park T E, Singh B, Maharjan S, Choi Y J, Choung P H, Arote R B, Cho C S. Nanomedicine, 2015, 10:1165.
[5] Chen Y, Chen H R, Shi J L. Mol. Pharmaceutics, 2014, 11:2495.
[6] Zhao Y, Yu B, Hu H, Hu Y, Zhao N N, Xu F J. ACS Appl. Mater. Interfaces, 2014, 6:17911.
[7] Li F, Zhang Y S, Wang F L, Yang Q, Tan J L, Grifantini R, Wu H, Song C J, Jin B Q. Biomaterials, 2016, 76:399.
[8] Ediriwickrema A, Zhou J B, Deng Y, Saltzman M. Biomaterials, 2014, 35:9343.
[9] Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 2016, 1:16075.
[10] Mo R, Gu Z. Mater. Today, 2016, 19:274.
[11] Zheng C F, Zheng M B, Gong P, Deng J Z, Yi H Q, Zhang P F, Zhang Y J, Liu P, Ma Y F, Cai L T. Biomaterials, 2013, 34:3431.
[12] Gaspar V M, Gonçalves C, Melo-Diogo D D, Costa E C, Queiroz J A, Pichon C, Sousa F, Correia I J. J. Controlled Release, 2014, 189:90.
[13] Huang H Y, Kuo W T, Chou M J, Huang Y Y. J. Biomed. Mater. Res., Part A, 2011, 97:330.
[14] Xu B, Xia S, Wang F Z, Jin Q S, Yu T, He L L, Chen Y, Liu Y M, Li S Z, Tan X Y, Ren K, Yao S H, Zeng J, Song X R. Mol. Pharmaceutics, 2016, 13:663.
[15] Kumar V, Mondal G, Slavik P, Rachagani S, Batra S K, Mahato R I. Mol. Pharmaceutics, 2015, 12:1289.
[16] Zhang Q, Shen C N, Zhao N N, Xu F J. Adv. Funct. Mater., 2017, 27:1606229.
[17] Gu Y M, Guo Y Z, Wang C Y, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. Mater. Sci. Eng. C, 2017, 70:572.
[18] Chen L L, Ji F L, Bao Y M, Xia J, Guo L Y, Wang J Y, Li Y C. Mater. Sci. Eng. C, 2017, 70:418.
[19] Nguyen L H, Gao M Y, Lin J Q, Wu W T, Wang J, Chew S Y. Sci. Rep., 2017, 7:42212.
[20] Zhang T S, Ma J, Li C, Lin K, Lou F, Jiang H C, Gao Y Q, Yang Y L, Ming C, Ruan B. Oncol. Rep., 2017, 37:1653.
[21] Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell H H, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg M J, Sloane F B, Johnson J, Gatenby A R, Gillies J R. Cancer Res., 2013, 73:1524.
[22] Mcmahon H T, Boucrot E. Nat. Rev. Mol. Cell Biol., 2011, 12:517.
[23] Mayor S, Pagano R E. Nat. Rev. Mol. Cell Biol., 2007, 8:603.
[24] Meng H, Liong M, Xia T, Li Z X, Ji Z X, Zink J I, Nel A E. ACS Nano, 2010, 4:4539.
[25] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3:3273.
[26] Meng H, Mai W X, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink J I. ACS Nano, 2013, 7:994.
[27] Ma X, Zhao Y, Ng K W, Zhao Y L. Chem. Eur. J., 2013, 19:15593.
[28] Li T T, Xue S, Yue G, Chen Z Y, Li L, Li S, Hong Y, Wu C H, Zeng H J, Liu Y Y. ACS Appl. Mater. Interfaces, 2016, 8:13748.
[29] Han L, Tang C, Yin C H. Biomaterials, 2015, 60:42.
[30] Zhu C L, Wang X W, Lin Z Z, Xie Z H, Wang X R. J. Food Drug Anal., 2014, 22:18.
[31] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30:2180.
[32] Zhao N, Lin X, Zhang Q, Ji Z, Xu F J. Small, 2015, 11:6467.
[33] Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, Zhao Y. Antioxid. Redox Signaling, 2014, 21:707.
[34] Cao C, Zhao S, Yu Q, Liu Y, Zhou Y, Liu J. Nanomedicine:Nanotechnology, Biology and Medicine, 2016, 12:477.
[35] Taratula O, Garbuzenko O B, Chen A M, Minko T. J. Drug Targeting, 2011, 19:900.
[36] Zhu Y F, Meng W J, Gao H, Hanagata N. J. Phys. Chem. C, 2011, 115:13630.
[37] Zhou S W, Du X Z, Cui F B, Zhang X F. Small, 2014, 10:980.
[38] Freeman R, Finder T, Bahshi L, Willner I. Nano Lett., 2009, 9:2073.
[39] Zhao M X, Li J M, Du L, Tan C P, Xia Q, Mao Z W, Ji L N. Chem. Eur. J., 2011, 17:5171.
[40] Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W. Biomaterials, 2012, 33:2780.
[41] Xu J B, Li J M, Lin S, Wu T Y, Huang H Q, Zhang K Y, Sun Y X, Yeung K W K, Li G M, Bian L. Adv. Funct. Mater., 2016, 26:2463.
[42] Jang H J, Min D H. ACS Nano, 2015, 9:2696.
[43] Lülf H, Bertucci A, Septiadi D, Corradini R, De Cola L. Chem. -Eur. J., 2014, 20:10900.
[44] Zhao D, Liu C J, Zhuo R X, Cheng S X. Mol. Pharmaceutics, 2012, 9:2887.
[45] Zhang Y, Schwerbrock N M, Rogers A B, Kim W Y, Huang L. Mol. Ther., 2013, 21:1559.
[46] Chen L, Ding Y, Wang Y, Liu X, Babu R, Ravis W, Yan W. Int. J. Nanomed., 2013, 2013:137.
[47] Guan X W, Li Y H, Jiao Z X, Lin L, Chen J, Guo Z P, Tian H Y, Chen X S. ACS Appl. Mater. Interfaces, 2015, 7:3207.
[48] Kuang Y Y, Jiang X T, Zhang Y, Lu Y F, Ma H J, Guo Y B, Zhang Y J, An S, Li J F, Liu L S, Wu Y H, Liang J Y, Jiang C. Mol. Pharmaceutics, 2016, 13:1599.
[49] Jung H, Kim S A, Lee E, Mok H. Macromol. Res., 2015, 23:449.
[50] Dong D W, Tong S W, Qi X R. J. Biomed. Mater. Res., Part A, 2013, 101:1336.
[51] Wang M F, Liu T X, Han L Q, Gao W W, Yang S M, Zhang N. Polym. Chem., 2015, 6:3324.
[52] Xu C N, Wang P, Zhang J P, Tian H Y, Park K N, Chen X S. Small, 2015, 11:4321.
[53] Lu X, Wang Q Q, Xu F J, Tang G P, Yang W T. Biomaterials, 2011, 32:4849.
[54] Ding X F, Wang W, Wang Y Z, Bao X L, Wang Y, Wang C, Chen J, Zhang F R, Zhou J P. Mol. Pharmaceutics, 2014, 11:3307.
[55] Zhou X Y, Zheng Q Q, Wang C Y, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. ACS Appl. Mater. Interfaces, 2016, 8:12609.
[56] Xu X, Xie K, Zhang X Q, Pridgen E M, Park G Y, Cui D S, Shi J, Wu J, Kantoff P W, Lippard S J, Langer R, Walker G C, Farokhzad O C. Proc. Natl. Acad. Sci., 2013, 110:18638.
[57] Kim C, Shah B P, Subramaniam P, Lee K B. Mol. Pharmaceutics, 2011, 8:1955.
[58] Zhao F, Yin H, Li J. Biomaterials, 2014, 35:1050.
[59] Fan H, Hu Q D, Xu F J, Liang W Q, Tang G P, Yang W T. Biomaterials, 2012, 33:1428.
[60] Li J M, Zhang W, Su H, Wang Y Y, Tan C P, Ji L N, Mao Z W. Int. J. Nanomed., 2015, 10:3147.
[61] Han M, Lv Q, Tang X J, Hu Y L, Xu D H, Li F Z, Liang W Q, Gao J Q. J. Controlled Release, 2012, 163:136.
[62] Wang K, Hu Q, Zhu W, Zhao M, Ping Y, Tang G. Adv. Funct. Mater., 2015, 25:3380.
[63] Shen J N, Meng Q S, Sui H P, Yin Q, Zhang Z W, Yu H J, Li Y P. Mol. Pharm., 2014, 11:2579.
[64] Amjad M W, Amin M C I M, Katas H, Butt A M, Kesharwani P, Iyer A K. Mol. Pharm., 2015, 12:4247.
[65] Wang G H, Yang H K, Zhao Y, Zhang D W, Zhang L M, Lin J T. RSC Adv., 2015, 5:105901.
[66] Shi S. Zhu X C, Guo Q F, Wang Y J, Zuo T, Luo F, Qian Z Y. Int. J. Nanomed., 2012, 7:1749.
[67] Zou S, Cao N, Cheng D, Zheng R, Wang J, Zhu K, Shuai X. Int. J. Nanomed., 2012, 7:3823.
[68] Ding J X, Xiao C S, He C L, Li M Q, Li D, Zhuang X L, Chen X S. Nanotechnology, 2011, 22:494012.
[69] Li Z R, Li J G, Huang J S, Zhang J J, Cheng D, Shuai X T. Macromol. Biosci., 2015, 15:1497.
[70] Yue X, Qiao Y, Qiao N, Guo S T, Xing J F, Deng L D, Xu J Q, Dong A J. Biomacromolecules, 2010, 11:2306.
[71] Cheng Q, Du L L, Meng L W, Han S C, Wei T, Wang X X, Wu Y D, Song X Y, Zhou J H, Zheng S Q, Huang Y Y, Liang X J, Cao H Q, Liang A J, Liang Z C. ACS Appl. Mater. Interfaces, 2016, 8:4347.
[72] Wang Y R, Fang J, Cheng D, Wang Y, Shuai X T. Polymer, 2014, 55:3217.
[73] Yang B, Dong X, Lei Q, Zhuo R X, Feng J, Zhang X Z. ACS Appl. Mater. Interfaces, 2015, 7:22084.
[74] Gaspar V M, Baril P, Costa E C, De M D, Foucher F, Queiroz J A, Sousa F, Pichon C, Correia I J. J. Controlled Release, 2015, 213:175.
[75] Yang S D, Zhu W J, Zhu Q L, Chen W L, Ren Z X, Li F, Yuan Z Q, Li J Z, Liu Y, Zhou X F, Liu C, Zhang X N. J. Biomed. Mater. Res. B:Appl. Biomater., 2016.
[76] Chen M H, Zhang Y, Chen Z J, Xie S Z, Luo X M, Li X H. Acta Biomater., 2017, 49:444.
[77] Sigg S J, Postupalenko V Y, Duskey J T, Palivan C G, Meier W. Biomacromolecules, 2016, 17:935.
[78] Nam K, Nam H Y, Kim P H, Kim S W. Biomaterials, 2012, 33:8122.
[79] Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin V T. Cancer Lett., 2013, 343:224.
[80] Yin T J, Wang L, Yin L F, Zhou J P, Huo M R. Biomaterials, 2015, 61:10.
[81] Chang C, Dan H, Zhang L P, Chang M X, Sheng Y F, Zheng G H, Zhang X Z. J. Appl. Polym. Sci., 2015, 132:41752.
[82] Zhu L, Perche F, Wang T, Torchilin V P. Biomaterials, 2014, 35:4213.
[83] Zhang B Q, Jia F, Fleming M Q, Mallapragada S K. Int. J. Pharm., 2012, 427:88.
[84] Wei W, Lv P P, Chen X M, Yue Z G, Fu Q, Liu S Y, Yue H, Ma G H. Biomaterials, 2013, 34:3912.
[85] Guo D D, Hong S H, Jiang H L, Kim J H, Minai-Tehrani A, Kim J E, Shin J Y, Jiang T, Kim Y K, Choi Y J, Cho C S. Biomaterials, 2012, 33:2272.
[86] Kim Y M, Kim C H, Song S C. ACS Macro Lett., 2016, 5:297.
[87] He C, Ma H, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. J. Controlled Release, 2015, 213:e18.
[88] Ma H C, He C L, Cheng Y L, Li D S, Gong Y B, Liu J G, Tian H Y, Chen X S. Biomaterials, 2014, 35:8723.
[89] Deng Z J, Morton S W, Ben-Akiva E, Dreaden E C, Shopsowitz K E, Hammond P T. ACS Nano, 2013, 7:9571.
[90] Han Y Q, Zhang Y, Li D N, Chen Y Y, Sun J P, Kong F S. Int. J. Nanomed., 2014, 9:4107.
[91] Wang H J, Su W Y, Wang S, Wang X M, Liao Z Y, Kang C S, Han L, Chang J, Wang G X, Pu P Y. Nanoscale, 2012, 4:6501.
[92] Qu M H, Zeng R F, Fang S, Dai Q S, Li H P, Long J T. Int. J. Pharm., 2014, 474:112.
[93] Sun X Y, Pang Z Q, Ye H X, Qiu B, Guo L R, Li J W, Ren J F, Qian Y, Zhang Q Z, Chen J, Jiang X G. Biomaterials, 2012, 33:916.
[94] Yang Z Z, Li J Q, Wang Z Z, Dong D W, Qi X R. Biomaterials, 2014, 35:5226.
[95] Jose A, Labala S, Venuganti V V K. J. Drug Targeting, 2017, 25:330.
[96] Liu X, Huang G. Asian J. Pharm. Sci., 2013, 8:319.
[97] Barea M J, Jenkins M J, Gaber M H, Bridson R H. Int. J. Pharm., 2010, 402:89.
[98] Yao Y, Su Z H, Liang Y C, Zhang N. Int. J. Nanomed., 2015, 10:6185.
[99] Jeong U H, Garripelli V K, Jo S, Myung C S, Hwang S J, Kim J K, Park J S. J. Drug Delivery Sci. Technol., 2014, 24:27.
[100] Garripelli V K, Kim J K, Namgung R, Kim W J, Repka M A, Jo S. Acta Biomater., 2009, 6:477.
[101] Reddy T L, Garikapati K R, Reddy S G, Reddy B V, Yadav J S, Bhadra U, Bhadra M P. Sci. Rep., 2016, 6:35223.
[102] Jhaveri A, Deshpande P, Torchilin V. J. Controlled Release, 2014, 190:352.
[103] Peng Z, Wang C X, Fang E H, Lu X M, Wang G B, Tong Q. Plos One, 2014, 9:e92924.
[104] Peng Z, Fang E H, Wang C X, Lu X M, Wang G B, Tong Q. J. Nanosci. Nanotechnol., 2015, 15:3823.
[105] Li Y, Liu R Y, Yang J, Ma G H, Zhang Z Z, Zhang X. Biomaterials, 2014, 35:9731.
[106] Yin T H, Wang P, Li J G, Wang Y R, Zheng B W, Zheng R Q, Cheng D, Shuai X T. Biomaterials, 2014, 35:5932.
[107] Zuckerman J E, Davis M E. Nat. Rev. Drug Discovery, 2015, 14:843.
[108] Ozcan G, Ozpolat B, Coleman R L, Sood A K, Lopezberestein G. Adv. Drug Delivery Rev., 2015, 87:108.
[109] Gandhi N S, Tekade R K, Chougule M B. J. Controlled Release, 2014, 194:238.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[3] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[6] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[7] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[8] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[12] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[13] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[14] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[15] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.