中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 695-705 DOI: 10.7536/PC170347 Previous Articles   Next Articles

• Review •

CO2-Responsive Emulsion Systems

Shuang Guo, Zhiqiang Chen, Xiaofei Ren, Yongmin Zhang*, Xuefeng Liu*   

  1. Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21503094)
PDF ( 1623 ) Cited
Export

EndNote

Ris

BibTeX

Emulsions play an important role in a number of industrial processes and commercial products where immiscible liquid phases coexist. Recently how to balance the long-term stability and quick demulsification has become a key focus in emulsions. The emergence of stimuli-responsive emulsions has brought a ray of dawn. Over the past decade, CO2 as alternative of pH has aroused considerable attention in the fields of surfactants and their aggregates, polymers, solvents, as well as microemulsions, because of its renewability, low cost and good biocompatibility. Essentially CO2 acts as pH, but the former offers more advantages over the latter. However, the focus until recently shifted to the utilization of CO2 as a trigger for triggering emulsions between "on" (stable) or "off" (unstable) states. These CO2-responsive emulsions show considerable application potential in oil recovery, emulsion polymerization, extraction separation, cosmetics and other fields, because they can smartly response to the removal or bubbling of CO2 gas, reflecting in emulsification or demulsification of oil/water mixture. In this review, we highlight the recent advances in this field from general emulsion, Pickering emulsion, and microemulsion, respectively. The principle, performance and applications of the CO2-responsive emulsion system are introduced in details, and their future development and perspectives are also outlooked.
Contents
1 Introduction
2 CO2-responsive emulsions/microemulsions
2.1 CO2-responsive general emulsions
2.2 CO2-responsive Pickering emulsions
2.3 CO2-responsive microemulsions
3 Conclusion

CLC Number: 

[1] Myers D. Surfaces, Interfces, and Colloids. NY:John Wiley & Sons, Inc., 1999. 253.
[2] Becher P. Encyclopedia of Emulsion Technology. NY:Marcel Dekker, 1983. 10.
[3] Klier J, Tucker C J, Kalantar T H, Green D P. Adv. Mater., 2000, 12:1751.
[4] Boonme P. J. Cosmet. Dermatol., 2007, 6:223.
[5] Tang J T, Quinlan P J, Tam K C. Soft Matter, 2015, 11:3512.
[6] Simovic S, Ghouchi-Eskandar N, Prestidge C A. J. Drug Deliv. Sci. Technol., 2011, 21:123.
[7] Fernandes D A, Fernandes D D, Li Y C, Wang Y, Zhang Z F, Rousseau D, Gradinaru C C, Kolios M C. Langmuir, 2016, 32:10870.
[8] Kogan A, Garti N. Adv. Colloid Interface Sci., 2006, 123:369.
[9] Cheng M B, Wang J C, Li Y H, Liu X Y, Zhang X, Chen D W, Zhou S F, Zhang Q. J. Control. Release, 2008, 129:41.
[10] Schrade A, Landfester K, Ziener U. Chem. Soc. Rev., 2013, 42:6823.
[11] Wolf S, Feldmann C. Angew. Chem. Inter. Ed., 2016, 55:15728.
[12] Alison L, Ruhs P A, Tervoort E, Teleki A, Zanini M, Isa L, Studart A R. Langmuir, 2016, 32:13446.
[13] Pera-Titus M, Leclercq L, Clacens J M, De Campo F, Nardello-Rataj V. Angew. Chem. Inter. Ed., 2015, 54:2006.
[14] Huang J P, Cheng F Q, Binks B P, Yang H Q. J. Am. Chem. Soc., 2015, 137:15015.
[15] Stuart M A C, Huck W T S, Genzer J, Mueller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9:101.
[16] Zoppe J O, Venditti R A, Rojas O J. J. Colloid Interface Sci., 2012, 369:202.
[17] Binks B P, Murakami R, Armes S P, Fujii S. Angew. Chem. Inter. Ed., 2005, 44:4795.
[18] Singh V K, Ramesh S, Pal K, Anis A, Pradhan D K, Pramanik K. J. Mater. Sci.-Mater. Med., 2014, 25:703.
[19] Wang Z P, Rutjes F P, van Hest J C. Chem. Commun., 2014, 50:14550.
[20] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132:8180.
[21] Tu F Q, Lee D. J. Am. Chem. Soc., 2014, 136:9999.
[22] Lv J, Qiao W H, Xiong C Q. Langmuir, 2014, 30:8258.
[23] Chen Z W, Zhou L, Bing W, Zhang Z J, Li Z H, Ren J S, Qu X G. J. Am. Chem. Soc., 2014, 136:7498.
[24] Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Langmuir, 2014, 30:41.
[25] Bufe M, Wolff T. Langmuir, 2009, 25:7927.
[26] Tabor R F, Oakley R J, Eastoe J, Faul C F J, Grillo I, Heenan R K. Soft Matter, 2009, 5:78.
[27] Eastoe J, Dominguez M S, Cumber H, Wyatt P, Heenan R K. Langmuir, 2004, 20:1120.
[28] Jiang Y G, Wan P B, Xu H P, Wang Z Q, Zhang X, Smet M. Langmuir, 2009, 25:10134.
[29] Khoukh S, Tribet C, Perrin P. Colloid Surf.A-Physicochem. Eng. Asp., 2006, 288:121.
[30] Kong W W, Guo S, Wu S Q, Liu X F, Zhang Y M. Langmuir, 2016, 32:9846.
[31] Zhang Y D, Chen H, Liu X F, Zhang Y M, Fang Y, Qin Z R. Langmuir, 2016, 32:13728.
[32] Zhou J, Qiao X Y, Binks B P, Sun K, Bai M, Li Y H, Liu Y. Langmuir, 2011, 27:3308.
[33] Brugger B, Richtering W. Adv. Mater., 2007, 19:2973.
[34] Teixeira I F, da Silva Oliveira A A, Christofani T, Camilo Moura F C. J. Mater. Chem. A, 2013, 1:10203.
[35] Jessop P G, Heldebrant D J, Li X W, Eckert C A, Liotta C L. Nature, 2005, 436:1102.
[36] Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L. Science, 2006, 313:958.
[37] Ceschia E, Harjani J R, Liang C, Ghoshouni Z, Andrea T, Brown R S, Jessop P G. Rsc Adv., 2014, 4:4638.
[38] Xu P P, Wang Z Z, Xu Z H, Hao J C, Sun D J. J. Colloid Interface Sci., 2016, 480:198.
[39] Liang C, Harjani J R, Robert T, Rogel E, Kuehne D, Ovalles C, Sampath V, Jessop P G. Energy & Fuels, 2012, 26:488.
[40] Qin Y, Yang H Q, Ji J L, Yao S P, Kong Y, Wang Y. Tenside Surfactants Deterg., 2009, 46:294.
[41] Chai M F, Zheng Z B, Bao L, Qiao W H. J. Surfactants Deterg., 2014, 17:383.
[42] Lu H S, Guan X Q, Wang B G, Huang Z Y. J. Surfactants Deterg., 2015, 18:773.
[43] Li H H, Li Q, Hao J C, Xu Z H, Sun D J. Colloid Surf. A-Physicochem. Eng. Asp., 2016, 502:107.
[44] Jessop P G. Aldrichimica Acta, 2015, 48:18.
[45] Zhang Y M, Feng Y J, Wang J Y, He S, Guo Z R, Chu Z L, Dreiss C A. Chem. Commun., 2013, 49:4902.
[46] Zhang Y M, Feng Y J, Wang Y J, Li X L. Langmuir, 2013, 29:4187.
[47] Zhang Y M, Chu Z L, Dreiss C A, Wang Y J, Fei C H, Feng Y J. Soft Matter, 2013, 9:6217.
[48] Zhang Y M, An P Y, Liu X F, Fang Y, Hu X Y. Colloid Poly. Sci., 2015, 293:357.
[49] Su X, Cunningham M F, Jessop P G. Chem. Commun., 2013, 49:2655.
[50] Zhang Y M, Yin H Y, Feng Y J. Green Mater., 2014, 2:95.
[51] Zhang Y M, Feng Y J. J. Colloid Interface Sci., 2015, 447:173.
[52] Zhang Y M, Kong W W, An P Y, He S, Liu X F. Langmuir, 2016, 32:2311.
[53] Zhang Y M, Yang C C, Guo S, Chen H, Liu X F. Chem. Commun., 2016, 52:12717.
[54] Guo Z R, Feng Y J, Wang Y, Wang J Y, Wu Y F, Zhang Y M. Chem. Commun., 2011, 47:9348.
[55] Lin S J, Theato P. Macromol. Rapid Commun., 2013, 34:1118.
[56] Jiang J Z, Zhu Y, Cui Z G, Binks B P. Angew. Chem. Int. Ed., 2013, 52:12373.
[57] Lu H S, Liu D F, Wang B G, Qing D Y, Huang Z Y. J. Dispersion Sci. Technol., 2016, 37:1819.
[58] Rosen M J. Surfactants and Interfacial Phenomena, New Jersey:John Wiley & Sons, Inc., 2004. 303.
[59] Mihara M, Jessop P G, Cunningham M F. Macromolecules, 2011, 44:3688.
[60] Fowler C I, Muchemu C M, Miller R E, Phan L, O'Neill C, Jessop P G, Cunningham M F. Macromolecules, 2011, 44:2501.
[61] Lu H S, Guan X Q, Dai S S, Huang Z Y. J. Dispersion Sci. Technol., 2014, 35:655.
[62] Zhang Q, Yu G Q, Wang W J, Yuan H M, Li B G, Zhu S P. Langmuir, 2012, 28:5940.
[63] Zhou Z, Lu H S, Huang Z Y. J. Dispersion Sci. Technol., 2016, 37:1200.
[64] Lu H S, Zhou Z, Jiang J F, Huang Z Y. J. Appl. Polym. Sci., 2015, 132:41307
[65] George M, Weiss R G. J. Am. Chem. Soc., 2001, 123:10393.
[66] Wang Y P, Xu H P, Zhang X. Adv. Mater., 2009, 21:2849.
[67] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[68] Zhang Y M, An P Y, Liu X F. Soft Matter, 2015, 11:2080.
[69] Zhu L Y, Han Y C, Tian M Z, Wang Y L. Langmuir, 2013, 29:12084.
[70] Pickering U S. J. Chem. Soc., 1907, 91:2001.
[71] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7:21.
[72] Zhang Y M, Guo S, Wu W T, Qin Z R, Liu X F. Langmuir, 2016, 32:11861.
[73] Jiang J Z, Ma Y X, Cui Z G, Binks B P. Langmuir, 2016, 32:8668.
[74] Liang C, Liu Q X, Xu Z H. ACS Appl. Mater. Interfaces, 2014, 6:6898.
[75] Morse A J, Armes S P, Thompson K L, Dupin D, Fielding L A, Mills P, Swart R. Langmuir, 2013, 29:5466.
[76] Qian Y, Zhang Q, Qiu X Q, Zhu S P. Green Chem., 2014, 16:4963.
[77] Liu P W, Lu W Q, Wang W J, Li B G, Zhu S P. Langmuir, 2014, 30:10248.
[78] Fanun M. Microemulsions:Properties and Applications, NY:CRC Press, 2008. 51.
[79] Hoar T P, Schulman J H. Nature, 1943, 152:102.
[80] Schulman J H, Stoeckenius W, Prince L M. J. Phys. Chem., 1959, 63:1677.
[81] Brown P, Wasbrough M J, Gurkan B E, Hatton T A. Langmuir, 2014, 30:4267.
[82] Zhang Y M, Zhang Y D, Wang C, Liu X F, Fang Y, Feng Y J. Green Chem., 2016, 18:392.
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[3] Shiwei Tian, Guoliang Mao, Jiayu Zhang, Na Li, Mengyuan Jiang, Wei Wu. Switchable Pickering Emulsion System [J]. Progress in Chemistry, 2020, 32(4): 434-453.
[4] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[5] Yang Pinghui, Sun Wei, Hu Si, Chen Zhongren. Self-Assembly of Nanoparticles at Interfaces [J]. Progress in Chemistry, 2014, 26(07): 1107-1119.
[6] Meng Yali, Li Zhen, Chen Jing, Xia Chungu. Application Studies of Ionic Liquid Based Microemulsions [J]. Progress in Chemistry, 2011, 23(12): 2442-2456.
[7] Yi Chenglin, Yang Yiqun, Jiang Jinqiang, Liu Xiaoya, Jiang Ming. Research and Application of Particle Emulsifiers [J]. Progress in Chemistry, 2011, 23(01): 65-79.
[8] Yin Jianzhong Zhou Dan Wang Aiqin. Thermodynamic Properties and Applications of Supercritical Carbon Dioxide Microemulsions/Reverse Micelles [J]. Progress in Chemistry, 2009, 21(12): 2505-2514.
[9] Yang Fei Wang Jun Lan Qiang Sun Dejun Li Chuanxian. Research Progress on Pickering Emulsions [J]. Progress in Chemistry, 2009, 21(0708): 1418-1426.
[10] Wang Yang|Yan Zhipeng|Chen Fengqiu** Zhan Xiaoli. Nanotechnology in Heterogeneous Catalysis [J]. Progress in Chemistry, 2008, 20(09): 1263-1269.
[11] Huang Weian1*,Lan Qiang2,Zhang Yan2. Colloid Particles Adsorption and Interfacial Assembly at the Fluids Interface [J]. Progress in Chemistry, 2007, 19(0203): 212-219.
[12] Guodong Zhang,Xiao Chen**,Bo Jing. Ordered Molecular Assembly in Room Temperature Ionic Liquids [J]. Progress in Chemistry, 2006, 18(09): 1085-1091.
Viewed
Full text


Abstract

CO2-Responsive Emulsion Systems