中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 785-795 DOI: 10.7536/PC170327 Previous Articles   Next Articles

• Review •

Design and Performance of Catalysts for Direct Hydroxylation of Phenol to Dihydroxybenzene

Li Hai1, Tianyong Zhang1,2,3*, Bin Li1,3*, Shuang Jiang1,3*, Xia Zhang1, Xiaoyuan Ma1, Guanghui Zhang1   

  1. 1. Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
    3. Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21276187),the Natural Science Foundation of Tianjin (No.16JCYBJC20800) and the Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
PDF ( 1531 ) Cited
Export

EndNote

Ris

BibTeX

Catechol and hydroquinone are important industrial raw materials. The methods by which phenol hydroxylates to dihydroxybenzene (catechol and hydroquinone) by one step are high in utilization of reactant atoms, energy-saving and efficient, which are in line with the concept of sustainable development. Using H2O2 as oxidant in the oxidation process of phenol to dihydroxybenzene has become a hot spot in the field of catalytic synthesis because it is simple, environmentally-friendly and it can be done under mild reaction conditions. The catalyst plays a decisive role in this reaction system, and the phenol conversion and yield of the product greatly depend on the catalytic activity of catalyst. In this paper, the recent progresses in the catalysts which are used for the hydroxylation of phenol to dihydroxybenzene are reviewed. According to the reaction system, the catalysts are divided into the catalysts used in thermal-driven reaction systems and in photocatalytic reaction systems. The catalytic performances of the catalysts are mainly evaluated by the conversion of phenol, the selectivity of dihydroxybenzene and stability. The research of metal-containing catalysts in heterogeneous reaction systems using H2O2 as oxidant is mainly introduced. Finally, the development trends of application of catalysts in the reaction system of one-step hydroxylation of phenol with H2O2 are prospected.
Contents
1 Introduction
2 Catalysts used in thermal-driven reaction systems
2.1 Fe-containing catalysts
2.2 Cu-containing catalysts
2.3 Mixed metal oxide catalysts
2.4 Other metal-containing catalysts
2.5 TS-1 molecular sieve catalysts
2.6 Polyoxometalate compounds
3 Catalysts used in photocatalytic reaction systems
4 Conclusion

CLC Number: 

[1] 郝向英(Hao X Y), 刘芳(Liu F). 内蒙古师范大学学报:自然科学版(Journal of Inner Mongolia Normal University (Natural Science Edition)), 2007, 36(5):633.
[2] 熊春荣(Xiong C R), 林衍华(Lin Y H), 卢文奎(Lu W K).工业催化(Industrial Catalysis), 2003, 11(4):7.
[3] 姜红(Jiang H), 卢长娟(Lu C J), 陈日志(Chen R Z), 金万勤(Jin W Q). 现代化工(Modern Chemical Industry), 2009, 4:31.
[4] Varagnat J. Ind. Eng. Chem. Prod. Res. Dev., 1976, 15:212.
[5] Minosci F, Maggioni P. Chim. Ind., 1977, 59:239.
[6] Umemura S, Takamitsu N, Hamamoto T, Kuroda N. US 4078006, 1978.
[7] Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Appl. Catal. A-Gen., 2001, 221:63.
[8] 舒世立(Shu S L), 张硕旭(Zhang S X). 化学通报(Chemistry Bulletin), 2015, 78(8):702.
[9] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114:10834.
[10] Sheldon R A, Arends I W C E, Lempers H E B. Catal. Today, 1998, 41:387.
[11] Parida K M, Singha S, Sahoo P C. Catal. Lett., 2010, 136(1/2):155.
[12] Jiang Y Q, Lin K F, Zhang Y N, Liu J, Li G H, Sun J M, Xu X Z. Appl.Catal. A-Gen., 2012, 445:172.
[13] Li B S, Xu J Q, Liu J J, Zuo S L, Pan Z Y, Wu Z Y. J. Colloid Interface Sci., 2012, 366(1):114.
[14] Preethi M E L, Revathi S, Sivakumar T, Manikandan D,Divakar D, Rupa A V, Palanichami M.Catal. Lett., 2008, 120(1/2):56.
[15] Galarneau A, Barodawalla A, Pinnavaia T J. Nature, 1994,374:529.
[16] Yang S J, Liang G Z, Gu A J, Mao H H. Appl. Surf. Sci., 2013, 285:721.
[17] 赵玉梅(Zhao Y M). 化工进展(Chemical Industry and Engineering Progress), 2016, 35(z2):187.
[18] Chellal K, Bachari K, Sadi F. J. Clust. Sci., 2014, 25(2):523.
[19] Li J P H, Kennedy E, Stockenhuber M. Catal. Lett., 2014, 144(1):9.
[20] Parida K M, Rath D. J. Colloid Interface Sci., 2009, 340:209.
[21] Li B S, Wu K, Yuan T H, Han C Y, Xu J Q, Pang X M. Microporous Mesoporous Mater., 2012, 151:277.
[22] Samanta S, Giri S, Sastry P, Mal N, Manna A, Bhaumik A.Ind. Eng. Chem. Res., 2003, 42:3012.
[23] Wu C, Kong Y, Gao F, Wu Y, Lu Y N, Wang J, Dong L.Microporous Mesoporous Mater., 2008, 113:163.
[24] Liang X L, Yang R G, Li G Y, Hu C W. Microporous Mesoporous Mater., 2013, 182:62.
[25] Ahmed A E, Adam F. Microporous Mesoporous Mater., 2007, 103:284.
[26] Adam F, Andas J, Rahman I A. Chem. Eng. J., 2010, 165(2):658.
[27] Adam F, Wong J T, Ng E P. Chem. Eng. J., 2013, 214(1):63.
[28] Xu J, Ibrahim A R, Hu X H, Hong Y Z, Su Y Z, Wang H T, Li J. Microporous Mesoporous Mater., 2016, 231:1.
[29] Jin M M, Yang R G, Zhao M F, Li G Y, Hu C W. Ind. Eng. Chem. Res., 2014, 53(8):2932.
[30] 石国军(Shi G J), 陈宾宾(Chen B B), 许二岗(Xu E G).南京大学学报自然科学(Journal of Nanjing University(Natural Sciences)), 2015, 51(2):310.
[31] Zhang H, Zhang G Y, Bi X, Chen X T. J. Mater. Chem. A,2013, 1(19):5934.
[32] Hamdy M S, Mul G, Wei W, Anand R, Hanefeld U, Jansen J C, Moulijn J A. Catal. Today, 2005, 110:264.
[33] Gomes H T, Selvam P, Dapurkar S E, Figueiredo J L, Faria J L. Microporous Mesoporous Mater., 2005, 86:287.
[34] Dong Y L, Niu X Y, Zhu Y G, Yuan F L, Fu H J. Catal. Lett., 2011, 141(2):242.
[35] Zhang H L, Tang C J, Lv Y Y, Sun C Z, Gao F, Dong L, Chen Y. J. Colloid Interface Sci., 2012, 380(1):16.
[36] Karakhanov E A, Maximov A L, Kardasheva Y S, Skorkin V A, Kardashev S V, Predeina V V, Talanova M Y,Lurie-Luke E, Seeley J A, Cron S L. Appl. Catal. A:Gen., 2010, 385(1):62.
[37] Karakhanov E A, Maximov A L, Kardasheva Y S, Skorkin V A, Kardashev S V, Ivanova E A,Lurie-Luke E, Seeley J A, Cron S L. Ind. Eng. Chem. Res., 2010, 49(10):4607.
[38] Shi F W, Chen Y G, Sun L P, Zhang L, Hu J L. Catal. Commun., 2012, 25:102.
[39] Shi F W, Mu L, Yu P, Hu J L, Zhang L. J. Mol. Catal. A:Chem., 2014, 391:66.
[40] Shi F W, Zheng J L, Xu K, Zhang L, Hu J L. Catal. Commun., 2012, 28:23.
[41] 余海燕(Yu H Y), 刘全生(Liu Q S), 张顺(Zhang S), 杨柯利(Yang K L). 内蒙古工业大学学报(Journal of Inner Mongolia University of Technology), 2014, 4:267.
[42] 张敏(Zhang M), 肖质文(Xiao Z W), 何红运(He H Y).无机化学学报(Chinese Journal of Inorganic Chemistry), 2011, 27(3):427.
[43] 高肖汉(Gao X H), 吕雪川(Lv X C), 陈平(Chen P), 徐东辉(Xu D H), 苗永霞(Miao Y X). 石油学报(Acta Petrolei Sinica), 2012, 28(1):133.
[44] 刘慧慧(Liu H H), 蒋天龙(Jiang T L), 王艳芹(Wang Y Q).应用化学(Chinese Journal of Applied Chemistry),2014, 31(3):274.
[45] 于天(Yu T), 张思倩(Zhang S Q), 丁春敏(Ding C M), 赵振波(Zhao Z B). 化学通报(Chemistry Bulletin), 2015, 78(4):364.
[46] Zhao Y T, He G Y, Dai W, Chen H. Ind. Eng. Chem. Res., 2014, 53(32):12566.
[47] Xu T T, He G Y, Zhao Y T, Gu H Y, Jiang Z Y, Chen Q, Sun X Q, Chen H Q. Appl. Surf. Sci., 2016, 389:840.
[48] Zhang W J, Wang Y Z, Shen Y, Xie M J, Guo X F. Microporous Mesoporous Mater., 2016, 226:278.
[49] Xia C J, Long L H, Zhu B, Lin M, Shu X T. Catal. Commun., 2016, 80:49.
[50] Kumar A, Srinivas D. J. Mol. Catal. A:Chem., 2013, 368:112.
[51] Izgorodin A, Izgorodina E, MacFarlane D R. Energy Environ. Sci., 2012, 5(11):9496.
[52] Takashima T, Hashimoto K, Nakamura R. J. Am. Chem. Soc., 2012, 134(44):18153.
[53] Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J. Nat. Chem., 2011, 3(1):79.
[54] Kim K W, Kim S M, Choi S, Kim J, Lee I S. ACS Nano, 2012, 6(6):5122.
[55] Nakayama M, Shamoto M, Kamimura A. Chem. Mater., 2010, 22(21):5887.
[56] Meng Y, Genuino H C, Kuo C H, Huang H, Chen S Y, Zhang L, Rossi A, Suib S L. J. Am. Chem. Soc., 2013, 135(23):8594.
[57] Parida K M, Dash S S, Singha S. Appl. Catal. A-Gen., 2008, 351(1):59.
[58] Zhang X G, Liu P, Wu Y J, Yao Y, Wang J. Catal. Lett. 2010, 137(3/4):210.
[59] He Z, Wu J, Gao B Y, He H Y. ACS Appl. Mater. Interfaces, 2015, 7(4):2424.
[60] 吴娟(Wu J), 高丙莹(Gao B Y), 何红运(He H Y). 应用化学(Chinese Journal of Applied Chemistry), 2014,31(11):1302.
[61] Vijayan P, Anitha P, Rajeshkumar M, Viswanathamurthi P, Sugumar P. Polyhedron, 2017, 124:77.
[62] 郑亚清(Zheng Y Q), 陶文波(Tao W B), 丁克鸿(Ding K H).工业催化(Industrial Catalysis), 2014, 22(4):287.
[63] Andas J, Adam F, Rahman I A. Appl. Surf. Sci., 2014, 315:154.
[64] Nethravathi B P, Reddy K R, Mahendra K N. J. Porous Mater., 2014, 21(3):285.
[65] 李辉(Li H). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2013.
[66] 朱玉镇(Zhu Y Z), 沈健(Shen J). 化学工程(Chemical Engineering), 2014, 42(12):59.
[67] Pithakratanayothin S, Tongsri R, Chaisuwan T, Wongkasemjit S. Mater. Chem. Phys., 2016, 181:452.
[68] Huybrechts D R C, De Bruycker L, Jacobs P A. Nature, 1990, 345:240.
[69] Clerici M G, Bellussi G, Romano U. J. Catal., 1991, 129:159.
[70] Martens J A, Buskens P, Jacobs P A, van der Pol A, van Hooff J H C, Ferrini C, Kouwenhoven H W, Kooyman P J, van Bekkum H. Appl. Catal.A-Gen.,1993, 99:71.
[71] Mantegazza M A, Leofanti G, Petrini G, Padovan M, Zecchina A, Bordiga S. Stud. Surf. Sci. Catal., 1994, 82:541.
[72] Wu P, Komatsu T, Yashima T. J. Phys. Chem. B, 1998, 102:9297.
[73] Klaewkla R, Kulprathipanja S, Rangsunvigit P, Rirksomboon T, Rathbun W, Nemeth L. Chem. Eng. J., 2007, 129(1):21.
[74] Zuo Y, Song W C, Dai C Y, He Y P, Wang M L, Wang X S, Guo X W. Appl. Catal. A-Gen., 2013, 453:272.
[75] Zou H B, Sun Q L, Fan D Y, Fu W W, Liu L J, Wang R W. Catalysts, 2015, 5(4):2134.
[76] Kong Z P, Yue B, Deng W, Zhu K K, Yan M G, Peng Y F, He H Y. Appl. Organomet. Chem., 2014, 28(4):239.
[77] Jiang H, Jiang X L, She F, Wang Y, Xing W H, Chen R Z. Chem. Eng. J., 2014, 239:373.
[78] 姜红(Jiang H), 孟烈(Meng L), 陈日志(Chen R Z), 金万勤(Jin W Q), 邢卫红(Xing W H). 南京工业大学学报(自科版)(Journal of Nanjing University of Technology(Natural Science Edition)), 2012, 34(5):16.
[79] 姜修龙(Jiang X L), 佘飞(She F), 姜红(Jiang H), 陈日志(Chen R Z),邢卫红(Xing W H). 化学工程(Chemical Engineering), 2014, 42(2):69.
[80] 王东琴(Wang D Q), 李裕(Li Y), 柳来栓(liu L S), 李军平(Li J P), 张茹(Zhang R). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(12):2722.
[81] Kozhevnikov I V. Chem. Rev., 1998, 98:171.
[82] Yu J F, Yang P P, Yang Y, Wu T H, Parquette J R. Catal. Commun., 2006, 7:153.
[83] Parida K M, Mallick S. J. Mol. Catal. A:Chem., 2008, 279:104.
[84] 胡玉才(Hu Y C). 石油化工高等学校学报(Journal of Petrochemical Universities), 2005, 18:11.
[85] Wang J M, Yan L, Qian G, Lv G M, Li G X, Suo J S, Wang X L. React. Kinet. Catal. Lett., 2007, 91(1):111.
[86] Pamin K, Poltowicz J, Pronczuk M, Basag S, Maciejewskaa J,Krysciak-Czerwenkaa J, Tokarz-Sobieraja R. Catal. Today, 2015, 257(1):80.
[87] Lang X J, Ji H W, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2011, 123:4020.
[88] Lang X J, Ma W H, Zhao Y B, Chen C C, Ji H W, Zhao J C. Chem. -Eur. J., 2012, 18:2624.
[89] Li Y, Ji H W, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2013, 52:12636.
[90] Lang X J, Zhao J C, Chen X D. Angew. Chem. Int. Ed., 2016, 55:4697.
[91] Wang Q, Zhang M, Chen C C, Ma W H, Zhao J C. Angew.Chem. Int. Ed., 2010, 49:7976.
[92] Zhang M, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2008, 47:9730.
[93] Lv K L, Guo X J, Wu X F, Li Q, Ho W K, Li M, Ye H P, Du D Y. Appl. Catal. B-Environ., 2016, 199:405.
[94] 付宁宁(Fu N N), 沈健(Shen J). 精细化工(Fine Chemicals), 2015, 32(6):662.
[95] Shi H X, Zhang T Y, Li B, Wang X, He M, Qiu M Y. Catal. Commun., 2011, 12(11):1022.
[96] 史慧贤(Shi H X). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2011.
[97] Shi H X, Zhang T Y, An T C, Li B, Wang X. Curr. Org. Chem., 2012, 16(24):3002.
[98] 商希礼(Shang X L). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2013.
[99] Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T. Chem. Mater., 2010, 22:3079.
[100] Wang Y, Wen Y Y, Ding H M, Shan Y K. J. Mater. Sci., 2010, 45:1385.
[101] He W D, Qin W, Wu X H, Ding X B, Chen L, Jiang Z H. Thin Solid Films, 2007, 515:5362.
[102] Naik B, Parida K M, Behera G C. ChemCatChem, 2011, 3(2):311.
[103] Das D P, Barik R K, Das J, Mohapatra P, Parida K M. RSC Adv., 2012, 2(19):7377.
[104] Jiang S, Zhang T Y, Zhang X, Zhang G, Li B. Dalton Trans., 2015, 44(38):16708.
[105] Wang Y H, Zhang T Y, Li B, Jiang S, Sheng L. RSC Adv., 2015, 5(37):29022.
[106] Wang X, Zhang T Y, Yang Q S, Jiang S, Li B. Eur. J. Inorg. Chem., 2015, 5:817.
[107] Zhang X, Zhang T Y, Li B, Zhang G H, Hai L, Jiang S.RSC Adv., 2017, 7(1):2934.
[108] Wang Y H, Yang Y W, Zhang T Y, Zhang X, Jiang S,Zhang G H, Li B. J. Organomet. Chem., 2016, 825/826:55.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.