中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (6): 683-694 DOI: 10.7536/PC170231 Previous Articles   

• Review •

Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries

Hao Wang1,2, Bangwei Deng1,2, Wujie Ge1,2, Tao Chen1,2, Meizhen Qu1, Gongchang Peng1*   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC170231 E-mail:pgc0102@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51474196), the National High-Tech R&D Program of China (No. 2013AA031703) and the "Western Light" Project.
PDF ( 2383 ) Cited
Export

EndNote

Ris

BibTeX

Recently, the attention to sodium-ion batteries (SIBs) has been aroused on the next generation energy storage systems applications, due to their specific advantages. However, the development of SIBs remains significant challenges. Owing to their open frameworks and porous channels for Na+ fast migration, the Prussian blue analogues (PBs) materials can effectively improve the electrochemical performance of SIBs. Herein, we summarize the recent advances and applications of PBs materials for SIBs in terms of preparation process, electronic mechanism and modification technology. The effects of migration ions, transition metals, bound water and vacancy on the electrochemical performance of SIBs are particularly introduced. Moreover, we summarize the research progress on the PBs-based aqueous SIBs, hybrid batteries and appropriate electrolyte. Further, the current difficulties and future research directions of the PBs-based SIBs are also discussed to give an outlook of the prospect trends and application potentials in energy storage systems.

Contents
1 Introduction
2 Preparation of Prussian blue analogues
2.1 Co-precipitation method
2.2 Hydrothermal method
3 Mechanism study of Prussian blue analogues
3.1 Migration ions
3.2 Transition metals
3.3 Bound water and vacancy
4 Modification of Prussian blue analogues
4.1 Doping
4.2 Coating
5 Aqueous rechargeable sodium-ion battery
6 Other researches
6.1 Metal-sodium hybrid battery
6.2 Electrolyte and separator
6.3 Security studies
7 Conclusion

CLC Number: 

[1] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8:320.
[2] Goodenough J B, Kim Y. Chem. Mater., 2010, 22:587.
[3] Armand J M T M. Nature, 2001, 414:359.
[4] Cho Y, Oh P, Cho J. Nano Lett., 2013, 13:1145.
[5] Jung Y S, Lu P, Cavanagh A S, Ban C, Kim G H, Lee S H, George S M, Harris S J, Dillon A C. Adv. Energy Mater., 2013, 3:213.
[6] Wang L P, Yu L H, Wang X, Srinivasan M, Xu Z C. J. Mater. Chem. A, 2015, 3:9353.
[7] Xiang X D, Zhang K, Chen J. Adv. Mater., 2015, 27:5343.
[8] Kubota K, Komaba S. J. Electrochem. Soc., 2015, 162:A2538.
[9] Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Adv. Energy Mater., 2016, 6:18.
[10] Zhang N, Liu Y C, Chen C C, Tao Z L, Chen J. Chinese Journal of Inorganic Chemistry, 2015, 31:1739.
[11] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero Gonzalez J, Rojo T. Energy Environ. Sci., 2012, 5:5884.
[12] Sawicki M, Shaw L L. RSC Adv., 2015, 5:53129.
[13] Kundu D, Talaie E, Duffort V, Nazar L F. Angew. Chem. Int. Ed., 2015, 54:3431.
[14] You Y, Kim S O, Manthiram A. Adv. Energy Mater., 2017, 7:1601698.
[15] Wang P F, You Y, Yin Y X, Guo Y G. J. Mater. Chem. A, 2016, 4:17660.
[16] Dahbi M, Nakano T, Yabuuchi N, Ishikawa T, Kubota K, Fukunishi M, Shibahara S, Son J Y, Cui Y T, Oji H, Komaba S. Electrochem. Commun., 2014, 44:66.
[17] Whitacre J F, Tevar A, Sharma S. Electrochem. Commun., 2010, 12:463.
[18] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1:2653.
[19] Lin Y M, Abel P R, Gupta A, Goodenough J B, Heller A, Mullins C B. ACS Appl. Mater. Interfaces, 2013, 5:8273.
[20] Mu L Q, Xu S Y, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. Adv. Mater., 2015, 27:6928.
[21] Xia W, Mahmood A, Zou R Q, Xu Q. Energy Environ. Sci., 2015, 8:1837.
[22] Wang P F, You Y, Yin Y X, Wang Y S, Wan L J, Gu L, Guo Y G. Angew. Chem. Int. Ed., 2016, 55:7445.
[23] Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y. Energy Environ. Sci., 2009, 2:559.
[24] Cai D P, Liu B, Wang D D, Wang L L, Liu Y, Qu B H, Duan X C, Li Q H, Wang T H. J. Mater. Chem. A, 2016, 4:183.
[25] Combelles C, Ben Yahia M, Pedesseau L, Doublet M L. J. Phys. Chem. C, 2010, 114:9518.
[26] Matsuda T, Takachi M, Moritomo Y. Chem. Commun., 2013, 49:2750.
[27] Wang L, Song J, Qiao R M, Wray L A, Hossain M A, Chuang Y D, Yang W L, Lu Y H, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough J B. J. Am. Chem. Soc., 2015, 137:2548.
[28] Matsuda T, Kim J, Moritomo Y. J. Am. Chem. Soc., 2010, 132:12206.
[29] Keggin J F, Miles F D. Nature, 1936, 4:577.
[30] 杨旸(Yang Y), 严小敏(Yan X M), 杨德志(Yang D Z), 王红(Wang H), 廖小珍(Liao X Z), 马紫峰(Ma Z F). 储能科学与技术(Energy Storage Science and Technology),2016, 5:303.
[31] Perez E, Amador R N, Carboni M, Meyer D. Mater. Lett., 2016, 167:188.
[32] Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2011, 2:5.
[33] Chen R J, Huang Y X, Xie M, Wang Z H, Ye Y S, Li L, Wu F. ACS Appl. Mater. Interfaces, 2016, 8:31669.
[34] Wu X Y, Deng W W, Qian J F, Cao Y L, Ai X P, Yang H X. J. Mater. Chem. A, 2013, 1:10130.
[35] Lu Y H, Wang L, Cheng J G, Goodenough J B. Chem Commun., 2012, 48:6544.
[36] Liu Y, Qiao Y, Zhang W X, Li Z, Ji X, Miao L, Yuan L X, Hu X L, Huang Y H. Nano Energy, 2015, 12:386.
[37] You Y, Yu X Q, Yin Y X, Nam K W, Guo Y G. Nano Res., 2015, 8:117.
[38] Lee H W, Wang R Y, Pasta M, Woo Lee S, Liu N, Cui Y. Nat. Commun., 2014, 5:5280.
[39] Pramudita J C, Schmid S, Godfrey T, Whittle T, Alam M, Hanley T, Brand H E A, Sharma N. Phys. Chem. Chem. Phys., 2014, 16:24178.
[40] Xiao P H, Song J, Wang L, Goodenough J B, Henkelman G. Chem. Mater., 2015, 27:3763.
[41] Sun H, Sun H B, Wang W, Jiao H D, Jiao S Q. RSC Adv., 2014, 4:42991.
[42] Jia Z J, Wang J, Wang Y. RSC Adv., 2014, 4:22768.
[43] You Y, Yao H R, Xin S, Yin Y X, Zuo T T, Yang C P, Guo Y G, Cui Y, Wan L J, Goodenough J B. Adv. Mater., 2016, 28:7243.
[44] Yu S H, Shokouhimehr M, Hyeon T, Sung Y E. ECS Electrochem. Lett., 2013, 2:A39.
[45] Li W J, Chou S L, Wang J Z, Kang Y M, Wang J L, Liu Y, Gu Q F, Liu H K, Dou S X. Chem. Mater., 2015, 27:1997.
[46] You Y, Wu X L, Yin Y X, Guo Y G. Energy Environ. Sci., 2014, 7:1643.
[47] Wang L, Lu Y H, Liu J, Xu M W, Cheng J G, Zhang D W, Goodenough J B. Angew. Chem. Int. Ed., 2013, 52:1964.
[48] Meng Q, Zhang W, Hu M, Jiang J S. Chem. Commun., 2016, 52:1957.
[49] Yue Y, Binder A J, Guo B, Zhang Z, Qiao Z A, Tian C, Dai S. Angew. Chem. Int. Ed., 2014, 53:3134.
[50] You Y, Wu X L, Yin Y X, Guo Y G. J. Mater. Chem. A, 2013, 1:14061.
[51] Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48:8416.
[52] Wu X Y, Luo Y, Sun M Y, Qian J F, Cao Y L, Ai X P, Yang H X. Nano Energy, 2015, 13:117.
[53] Xie M, Huang Y X, Xu M H, Chen R J, Zhang X X, Li L, Wu F. J. Power Sources, 2016, 302:7.
[54] Song J, Wang L, Lu Y H, Liu J, Guo B K, Xiao P H, Lee J J, Yang X Q, Henkelman G, Goodenough J B. J. Am. Chem. Soc., 2015, 137:2658.
[55] Wu X Y, Wu C H, Wei C X, Hu L, Qian J F, Cao Y L, Ai X P, Wang J L, Yang H X. ACS Appl. Mater. Interfaces, 2016, 8:5393.
[56] Moritomo Y, Urase S, Shibata T. Electrochim. Acta, 2016, 210:963.
[57] Xie M, Xu M H, Huang Y X, Chen R J, Zhang X X, Li L, Wu F. Electrochem. Commun., 2015, 59:91.
[58] Yu S L, Li Y, Lu Y H, Xu B, Wang Q T, Yan M, Jiang Y Z. J. Power Sources, 2015, 275:45.
[59] Minowa H, Yui Y, Ono Y, Hayashi M, Hayashi K, Kobayashi R, Takahashi K I. Solid State Ionics, 2014, 262:216.
[60] Yang D, Xu J, Liao X Z, He Y S, Liu H, Ma Z F. Chem. Commun., 2014, 50:13377.
[61] Jaumann T, Balach J, Klose M, Oswald S, Langklotz U, Michaelis A, Eckert J, Giebeler L. Phys. Chem. Chem. Phys., 2015, 17:24956.
[62] Cho W, Kim S M, Song J H, Yim T, Woo S G, Lee K W, Kim J S, Kim Y J. Journal of Power Sources, 2015, 282:45.
[63] Zhang X F, Belharouak I, Li L, Lei Y, Elam J W, Nie A M, Chen X Q, Yassar R S, Axelbaum R L. Adv. Energy Mater., 2013, 3:1299.
[64] Moritomo Y, Goto K, Shibata T. Energies, 2015, 8:9486.
[65] Yang D Z, Xu J, Liao X Z, Wang H, He Y S, Ma Z F. Chem. Commun., 2015, 51:8181.
[66] Prabakar S J R, Jeong J, Pyo M. RSC Adv., 2015, 5:37545.
[67] Nie P, Shen L F, Pang G, Zhu Y Y, Xu G Y, Qing Y H, Dou H, Zhang X G. J. Mater. Chem. A, 2015, 3:16590.
[68] Li W J, Chou S L, Wang J Z, Wang J L, Gu Q F, Liu H K, Dou S X. Nano Energy, 2015, 13:200.
[69] Zhou M, Zhu L M, Cao Y L, Zhao R R, Qian J F, Ai X P, Yang H X. RSC Adv., 2012, 2:5495.
[70] Tang Y, Zhang W X, Xue L H, Ding X L, Wang T, Liu X X, Liu J, Li X C, Huang Y H. J. Mater. Chem. A, 2016, 4:6036.
[71] Chen R J, Huang Y X, Xie M, Zhang Q Y, Zhang X X, Li L, Wu F. ACS Appl. Mater. Interfaces, 2016, 8:16078.
[72] Yang X K, Wang X Y, Hu L, Zou G S, Su S J, Bai Y S, Shu H B, Wei Q L, Hu B N, Ge L, Wang D, Liu L. Journal of Power Sources, 2013, 242:589.
[73] Wan M, Tang Y, Wang L L, Xiang X H, Li X C, Chen K Y, Xue L H, Zhang W X, Huang Y H. J. Power Sources, 2016, 329:290.
[74] Okubo M, Li C H, Talham D R. Chem. Commun., 2014, 50:1353.
[75] Fernández-Ropero A J, Piernas-Muñoz M J, Castillo-MartínezE, Rojo T, Casas-Cabanas M. Electrochim. Acta, 2016, 210:352.
[76] Yun J, Pfisterer J, Bandarenka A S. Energy Environ. Sci., 2016, 9:955.
[77] Wessells C D, Peddada S V, Huggins R A, Cui Y. Nano Lett., 2011, 11:5421.
[78] Dong H, Li Y F, Liang Y L, Li G S, Sun C J, Ren Y, Lu Y H, Yao Y. Chem. Commun., 2016, 52:8263.
[79] Lu K, Song B, Zhang J T, Ma H Y. J. Power Sources, 2016, 321:257.
[80] Piernas-Muñoz M M J, Castillo-Martínez E, Gómez-Cámer J L, Rojo T. Electrochim. Acta, 2016, 200:123.
[81] Yang Y, Brownell C R, Sadrieh N, May J C, Del Grosso A V, Lyon R C, Faustino P J. J. Pharm. Biomed. Anal., 2007, 43:1358.
[82] Johnson C A. Appl. Geochem., 2015, 57:194.
[83] Sun X, Ji X Y, Zhou Y T, Shao Y, Zang Y, Wen Z Y, Chen C H. J. Power Sources, 2016, 314:35.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[10] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[15] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.