中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 553-562 DOI: 10.7536/PC170203 Previous Articles   Next Articles

• Review •

Electrolytes for Rechargeable Magnesium-Sulfur Batteries

Yaqi Li, Pengjian Zuo*, Ruinan Li, Yulin Ma, Geping Yin*   

  1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 2143303).
PDF ( 2680 ) Cited
Export

EndNote

Ris

BibTeX

Rechargeable magnesium-sulfur batteries have advantages of good safety, low cost, and high theoretical energy density. Currently, electrolyte is the key factor to restrict the development of magnesium-sulfur batteries. Generally, traditional Grignard reagents and magnesium ion electrolytes are nucleophilic and incompatible with sulfur. In this paper, the electrolytes for magnesium-sulfur batteries are divided into four categories, containing organomagnesium+AlCl3, MgCl2+organoaluminum halide, MgCl2+AlCl3 and magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI)2). Among them, the organomagnesium+AlCl3 electrolyte is relatively promising for magnesium-sulfur batteries, and HMDSMgCl+AlCl3/THF electrolyte is used to demonstrate a proof of concept for the first rechargeable Mg/S battery. The Mg(TFSI)2 or MgCl2+AlCl3 based electrolyte for magnesium-sulfur batteries do not contain organic metal salts, and the synthesis methods are simple. However, the batteries using these two kinds of electrolytes exhibit low specific capacity and discharge voltage. As for MgCl2+organoaluminum halide electrolyte, the compatibility with the sulfur electrode has been proved, while the specific capacity, the discharge voltage and other electrochemical properties have not been reported. It is generally believed that the electrolytes for magnesium-sulfur batteries contain monomer Mg, dimeric Mg, trimeric Mg species and other Mg complexes at the same time, and there is a thermodynamically equilibrium among them regulating electrolyte ion conductivity, diffusion coefficient and so on. The effect of anions on the electrolyte is mainly reflected in the anodic stability of electrolytes and the reversibility of Mg deposition-dissolution. Electrolyte additives in the magnesium-sulfur battery electrolyte make a contribution to reduce dissolution of sulfur species and the reoxidation kinetic barrier of low-order MgPS (PS is polysulfides), restrain shuttle effect, and improve the electrolyte conductivity. At last, the research trends of electrolyte for magnesium sulfur batteries are proposed.
Contents
1 Introduction
2 Electrolytes for rechargeable magnesium-sulfur batteries
2.1 Organomagnesium + AlCl3
2.2 MgCl2 + organoaluminum halide
2.3 MgCl2+ AlCl3
2.4 Mg(TFSI)2
3 Structure of the active cations
4 The comparison of anions
5 Electrolyte additives
6 Conclusion

CLC Number: 

[1] Ling C, Banerjee D, Matsui M. Electrochimica Acta, 2012, 76:270.
[2] Saha P, Datta M K, Velikokhatnyi O I, Manivannan A, Alman D, Kumta P N. Progress in Materials Science, 2014, 66:1.
[3] Nelson J M, Evans W V. J. Am. Chem. Soc., 1917, 39:82.
[4] Gregory T D, Hoffman R J, Winterton R C. Electrochem. Soc, 1990, 137:775.
[5] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Nature, 2000, 407:724.
[6] Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Nat. Commun., 2011, 2:427.
[7] Liebenow C, Yang Z, Lobitz P. Electrochemistry Communications, 2000, 2:641.
[8] Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm R J, Fichtner M. Advanced Energy Materials, 2015, 5(3):1401155.
[9] Vinayan B P, Zhao-Karger Z, Diemant T, Chakravadhanula V S K, Schwarzburger N I, Cambaz M A, Behm R J, Kübel C, Fichtner M. Nanoscale, 2016, 8(6):3296.
[10] Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M. RSC Advances, 2013, 3(37):16330.
[11] Liu T, Shao Y, Li G, Gu M, Hu J, Xu S, Nie Z, Chen X, Wang C, Liu J. Journal of Materials Chemistry A, 2014, 2(10):3430.
[12] Cheng Y, Stolley R M, Han K S, Shao Y, Arey B W, Washton N M, Mueller K T, Helm M L, Sprenkle V L, Liu J, Li G. Phys. Chem. Chem. Phys., 2015, 17(20):13307.
[13] Zhao-Karger Z, Mueller J E, Zhao X, Fuhr O, Jacob T, Fichtner M. RSC Advances, 2014, 4(51):26924.
[14] Doe R E, Han R, Hwang J. EP 279570A0, 2013.
[15] Doe R E, Han R, Hwang J, Gmitter A J, Shterenberg I, Yoo H D, Pour N, Aurbach D. Chem. Commun., 2014, 50(2):243.
[16] Muldoon J, Bucur C B, Oliver A G, Zajicek J, Allred G D, Boggess W C. Energy Environ. Sci., 2013, 6(2):482.
[17] Li W, Cheng S, Wang J, Qiu Y, Zheng Z, Lin H, Nanda S, Ma Q, Xu Y, Ye F, Liu M, Zhou L, Zhang Y. Angew. Chem. Int. Ed., 2016, 55, 6406.
[18] Tran T T, Lamanna W M, Obrovac M N. Journal of The Electrochemical Society, 2012, 159(12):A2005.
[19] Lossius L P, Emmenegger F. Electrochimica Acta, 1996, 41(3):445.
[20] Kimura T, Fujii K, Sato Y, Morita M, Yoshimoto N. The Journal of Physical Chemistry C, 2015, 119(33):18911.
[21] Ha S Y, Lee Y W, Woo S W, Koo B, Kim J, Cho J, Lee K T, Choi N. ACS Appl. Mater. Interfaces, 2014, 6(6):4063.
[22] Shterenberg, Salama M, Yoo H D, Gofer Y, Park J, Sun Y, Aurbach D. Journal of The Electrochemical Society, 2015, 162(13):A7118.
[23] Sa N, Pan B, Saha-Shah A, Hubaud A A, Vaughey J T, Baker L A, Liao C, Burrell A K. ACS Appl. Mater. Interfaces, 2016, 8(25):16002.
[24] Pan B, Huang J, He M, Brombosz S M, Vaughey J T, Zhang L, Burrell A K, Zhang Z, Liao C. ChemSusChem, 2016, 9:595.
[25] Kim I T, Yamabuki K, Sumimoto M, Tsutsumi H, Morita M, Yoshimoto N. Journal of Power Sources, 2016, 323:51.
[26] Kim I T, Yamabuki K, Morita M. Tsutsumi H, Yoshimoto N. Journal of Power Sources, 2015, 278:340.
[27] Sakamoto S, Imamoto T, Yamaguchi K. Organic Letters,2001, 3:1793.
[28] Liao C, Guo B, Jiang D E, Custelcean R, Mahurin S M, Sun X G, Dai S. J. Mater. Chem. A, 2014, 2(3):581.
[29] Benmayza A, Ramanathan M, Arthur T S, Matsui M, Mizuno F, Guo J, Glans P A, Prakash J. The Journal of Physical Chemistry C, 2013, 117(51):26881.
[30] Nakayama Y, Kudo Y, Oki H, Yamamoto K, Kitajima Y, Noda K. Journal of The Electrochemical Society, 2008, 155(10):A754.
[31] Barile C J, Barile C, Kevin K R, Nuzzo R G, Gewirth A A. The Journal of Physical Chemistry C, 2014, 118(48):27623.
[32] Aurbach D, Gizbar H, SchechterR A, Chusid O, Gottlieb H E, Gofer Y, Goldberg I. Journal of The Electrochemical Society, 2002, 149(2):A115.
[33] Guo Y, Yang J, NuLi Y, Wang J. Electrochemistry Communications, 2010, 12(12):1671.
[34] Gofer Y, Chusid O, Gizbar H, Viestfrid Y, Gottlieb H E, Marks V, Aurbach D. Electrochemical and Solid-State Letters, 2006, 9(5):A257.
[35] Guo Y, Zhang F, Yang J, Wang F. Electrochemistry Communications, 2012, 18:24.
[36] Pour N, Gofer Y, Major D T, Aurbach D. J. Am. Chem. Soc., 2011, 133(16):6270.
[37] Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Energy & Environmental Science, 2012, 5(3):5941.
[38] Gao T, Noked M, Pearse A J, Gillette E, Fan X, Zhu Y, Luo C, Suo L, Schroeder M A, Xu K, Lee S B, Rubloff G W, Wang C. J. Am. Chem. Soc., 2015, 137(38):12388.
[39] Bian P, NuLi Y, Abudoureyimu Z, Yang J, Wang J L. Electrochimica Acta, 2014, 121:258.
[40] Keyzer E N, Glass H F, Liu Z, Bayley P M, Dutton S E, Grey C P, Wright D S. J. Am. Chem. Soc., 2016, 138(28):8682.
[41] Mohtadi R, Matsui M, Arthur T S, Hwang S J. Angew. Chem. Int. Ed. Engl., 2012, 51(39):9780.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[8] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[9] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[10] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[13] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[14] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[15] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.