中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 459-466 DOI: 10.7536/PC170132 Previous Articles   Next Articles

• Review •

Synthesis and Applications of Triangular Gold Nanoplates

Weina Fang1,2, Shuang Lu1,2, Lihua Wang1, Chunhai Fan1, Huajie Liu1*   

  1. 1. CAS Key Laboratory of Interfacial Physics and Technology, Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (No.2013CB932803),the National Natural Science Foundation of China (No.21473236,31371015) and the Youth Innovation Promotion Association CAS.
PDF ( 1281 ) Cited
Export

EndNote

Ris

BibTeX

Colloidal metal nanoparticles are emerging as key materials because of their localized surface plasmon resonance (LSPR) property and the enormous applications in catalysis, plasmonics, sensing, and photonics. Anisotropic nanoparticles have attracted increasing attention due to the novel and unusual chemical and physical behavior along with the decreased symmetry. In the case of the anisotropic nanoparticles, triangular gold nanoplates stand out owing to their unique shape and excellent LSPR properties, which is of great significance to develop a new generation of photonic and electronic devices. However, compared with the spherical nanoparticles, the controllable synthesis of triangular gold nanoplates is much more difficult. Therefore, numerous efforts have been put into their controlled synthesis and a variety of methods have been developed successfully, providing opportunities for the better use of this new material. In this review, we highlight the synthetic achievements, the shape-directing mechanism and separation methods of triangular gold nanoplates. We also address the recent breakthroughs of Au triangular structures in constructing anisotropic superlattices and taking advantage of their enhanced electromagnetic field for single-molecular fluorescence detection and surface-enhanced Raman scattering. Finally, with the development of the self-assembly technology, we believe that Au triangular nanoplates are powerful building blocks for the bottom-up materials engineering and it will play a more important role in chemistry, materials and other fields.
Contents
1 Introduction
2 Synthesis of triangular nanoplates
2.1 Chemical or biological reduction methods
2.2 Microwave, ultrasound and light-assisted techniques
3 Mechanisms of crystal growth
4 Various separation methods
4.1 Separation by "bottom-up" method
4.2 Separation by "top-down" method
5 Properties and applications
6 Conclusion

CLC Number: 

[1] Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y. Angew. Chem. Int. Ed., 2012, 51:5629.
[2] Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C. Angew. Chem. Int. Ed., 2016, 128:8168.
[3] Christopher P, Xin H, Linic S. Nature Chem., 2011, 3:467.
[4] Zan G, Wu Q. Adv. Mater., 2016, 28:2099.
[5] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112:2739.
[6] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107:668.
[7] Millstone J E, Hurst S J, Métraux G S, Cutler J I, Mirkin C A. Small, 2009, 5:646.
[8] Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294:1901.
[9] Lee K E, Hesketh A V, Kelly T L. Phys. Chem. Chem. Phys., 2014, 16:12407.
[10] Lohse S E, Murphy C J. Chem. Mater., 2013, 25:1250.
[11] Milligan W O, Morriss R H. J. Am. Chem. Soc., 1964, 86:3461.
[12] Nelayah J, Kociak M, Stephan O, Garcia de Abajo F J, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan L M, Colliex C. Nature Phys., 2007, 3:348.
[13] Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov N A, Liz-Marzan L M. Langmuir, 2002, 18:3694.
[14] Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D, Bridges F, Van Buuren A. J. Phys. Chem. B, 2002, 106:7005.
[15] Millstone J E, Park S, Shuford K L, Qin L, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2005, 127:5312.
[16] Millstone J E, Métraux G S, Mirkin C A. Adv. Func. Mater., 2006, 16:1209.
[17] Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Chem. Mater., 2005, 17:5558.
[18] Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q. Nano Lett., 2014, 14:7201.
[19] Scarabelli L, Coronado-Puchau M, Giner-Casares J J, Langer J, Liz-Marzan L M. ACS Nano, 2014, 8:5833.
[20] Wang G, Tao S, Liu Y, Guo L, Qin G, Ijiro K, Maeda M, Yin Y. Chem. Commun., 2016, 52:398.
[21] Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Langmuir, 2012, 28:8965.
[22] Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Nature Mater., 2004, 3:482.
[23] Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. J. Phys. Chem. B, 2005, 109:15256.
[24] Brown S, Sarikaya M, Johnson E. J. Mol. Biol., 2000, 299:725.
[25] Shao Y, Jin Y, Dong S. Chem. Commun., 2004, 9:1104.
[26] Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T. Chem. Lett., 2003, 32:1114.
[27] Li C, Cai W, Li Y, Hu J, Liu P. J. Phys. Chem. B, 2006, 110:1546.
[28] Tangeysh B, Moore Tibbetts K, Odhner J H, Wayland B B, Levis R J. Nano Lett., 2015, 15:3377.
[29] Zhai Y, DuChene J S, Wang Y C, Qiu J, Johnston-Peck A C, You B, Guo W, DiCiaccio B, Qian K, Zhao E W, Ooi F, Hu D, Su D, Stach E A, Zhu Z, Wei W D. Nature Mater., 2016, 15:889.
[30] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13:1389.
[31] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37:1783.
[32] Rai A, Singh A, Ahmad A, Sastry M. Langmuir, 2006, 22:736.
[33] Ha T H, Koo H J, Chung B H. J. Phys. Chem. C, 2007, 111:1123.
[34] Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Nano Lett., 2008, 8:2526.
[35] Lohse S E, Burrows N D, Scarabelli L, Liz-Marzan L M, Murphy C J. Chem. Mater., 2014, 26:34.
[36] Magnussen O M. Chem. Rev., 2002, 102:679.
[37] Khanal B P, Zubarev E R. J. Am. Chem. Soc., 2008, 130:12634.
[38] Millstone J E, Georganopoulou D G, Xu X, Wei W, Li S, Mirkin C A. Small, 2008, 4:2176.
[39] Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. J. Colloid Interface Sci., 2010, 348:29.
[40] Ha T H, Kim Y J, Park S H. Chem. Commun., 2010, 46:3164.
[41] Young K L, Jones M R, Zhang J, Macfarlane R J, Esquivel-Sirvent R, Nap R J, Wu J, Schatz G C, Lee B, Mirkin C A, Proc. Natl. Acad. Sci. U. S. A., 2012, 109:2240.
[42] Liu R, Zhou J H, Zhou Z K, Jiang X, Liu J, Liu G, Wang X H. Nanoscale, 2014, 6:13145.
[43] Zhang F, Zhu J, An H Q, Li J J, Zhao J W. J. Mater. Chem. C, 2016, 4:568.
[44] Jones M R, Mirkin C A. Angew. Chem. Int. Ed., 2013, 52:2886.
[45] Hao M, Liu C, Peng L, Li J, Lu W, Jiang L. J. Colloid Interface Sci., 2015, 437:311.
[46] Beeram S R, Zamborini F P. ACS Nano, 2010, 4:3633.
[47] Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J. ACS Nano, 2016, 10:3614.
[48] Zhou Y, Zhou X, Park D J, Torabi K, Brown K A, Jones M R, Zhang C, Schatz G C, Mirkin C A. Nano Lett., 2014, 14:2157.
[49] Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A. Nature Mater., 2010, 9:913.
[50] Radha B, Senesi A J, O'Brien M N, Wang M X, Auyeung E, Lee B, Mirkin C A. Nano Lett., 2014, 14:2162.
[51] Hong S, Shuford K L, Park S. Chem. Mater., 2011, 23:2011.
[52] Qin F, Zhao T, Jiang R, Jiang N, Ruan Q, Wang J, Sun L D, Yan C H, Lin H Q. Adv. Opt. Mater., 2016, 4:76.
[53] Shuford K L, Ratner M A, Schatz G C. J. Chem. Phys., 2005, 123:114713.
[54] Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B. Nano Lett., 2010, 10:4952.
[55] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner W E. Nature Photon., 2009, 3:654.
[56] 贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H J). 化学进展(Progress in Chemistry), 2014, 26(05):695.
[57] Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf Kurt V, Fan C. J. Am. Chem. Soc., 2013, 135:696.
[58] Dong Y, Yang Z, Liu D. Acc. Chem. Res., 2014, 47:1853.
[1] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[2] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[3] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[4] Weizhen Liu, Jiayi Zheng, Zhicheng Wu, Zhangbin Liu, Zhang Lin. The Application of Micro-Mechanism of Crystal Changes under the Surface/Interface Control in Treating Chromium-Containing Residues [J]. Progress in Chemistry, 2017, 29(9): 1053-1061.
[5] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[6] Song Chunyuan, Chen Wenqiang, Yang Yanjun, Yang Boyue, Su Shao, Wang Lianhui. Surface-Enhanced Raman Scattering Tags Used in Cell Recognition, Imaging, Diagnosis and Treatment [J]. Progress in Chemistry, 2015, 27(1): 91-102.
[7] Song Chunyuan, Yang Yanjun, Wang Lianhui. SERS-Based Nucleic Acid Detection [J]. Progress in Chemistry, 2014, 26(09): 1516-1526.
[8] Tao Qin, Dong Jian, Qian Weiping*. Quantitative Analysis of Surface-Enhanced Raman Spectroscopy [J]. Progress in Chemistry, 2013, 25(06): 1031-1041.
[9] Shao Feng, Chen Kun, Luo Zhihui, Wang Yanjun, Lu Donglian, Han Heyou* . Application of SERS Techniques in Diagnosis and Bioassay [J]. Progress in Chemistry, 2012, 24(12): 2391-2402.
[10] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[11] Hu Juan, Zhang Chunyang. Surface-Enhanced Raman Scattering Technology and Its Application to Gene Analysis [J]. Progress in Chemistry, 2010, 22(08): 1641-1647.
[12] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.