中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 412-425 DOI: 10.7536/PC161227 Previous Articles   Next Articles

• Review •

Synthesis of N-Heterocyclic Carbene Platinum Complexes and Application in the Organic Reaction

Fengxiang Zhang, Ying Bai*, Xiaoling Yang, Jiayun Li, Jiajian Peng*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21303034) and the Zhejiang Provincial Natural Science Foundation of China (No. LY14B030032).
PDF ( 1298 ) Cited
Export

EndNote

Ris

BibTeX

N-heterocyclic carbenes(NHC) have long been recognized as important ligands in organometallic chemistry, and NHC can form stable metal-carbon bonds with metals because of their stong σ-donating ability that provides the possibility to develop platinum NHC complexes as catalysts. N-heterocyclic carbene-platinum (Pt-NHC) complexes have been widely applied as catalysts in numerous catalytic organic reactions, in which the Pt-NHC system shows excellent catalytic performance and features with stable physical and chemical properties. On the other hand, the Pt-NHC complexes could be easily modified with different functional groups by modification of the stereo-effect and the corresponding electronic properties. In past years, it provides an effective method to solve the problem encountered in the process of using the traditional catalyst, and has become one of the hot topics in the organometallic chemistry and catalytic chemistry. In this manuscript, we summarize the recent progress in the synthesis of Pt-NHC complexes and their application in the catalytic organic transformations, including hydrosilylation of olefins/alkynes and ketones, isomerization reaction, hydroamination of unactivated olefins, borylation reactions of olefins, and hydration reaction of alkynes. Furthermore, the catalytic mechanism of all these reactions has been discussed. At last, the deficiencies as well as the perspective of Pt-NHC complexes have been also highlighted.

Contents
1 Introduction
2 Application of Pt-NHC complexes for hydrosilylation
2.1 Preparation of Pt(0)-NHC complexes and catalysis hydrosilylation
2.2 Preparation of Pt(Ⅱ)-NHC complexes and catalysis hydrosilylation
3 Application of Pt(Ⅱ)-NHC complexes in the cyclic-isomerization
4 Application of Pt(Ⅱ)-NHC complexes in the hydroamination of unactivated alkenes
5 Application of Pt(Ⅱ)-NHC complexes in the hydration of alkynes
6 Application of Pt(Ⅱ)-NHC complexes in the boride reaction of cycloolefin
7 Conclusion

CLC Number: 

[1] Arduengo A J, Harlow R L, Kline M. J. Am. Chem. Soc., 1991, 113(1): 361.
[2] Herrmann W A. Angew. Chem., 2002, 114(8): 1342.
[3] Bourissou D, Guerret O, Gabbaï F P, Bertrand G. Chem. Rev., 2000, 100(1): 39.
[4] 钱延龙(Qian Y L), 陈新滋(Chen X Z). 金属有机化学与催化(Organometallic Chemistry and Catalysis). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1997. 537.
[5] Peris E, Crabtree R H. Coord. Chem. Rev., 2004, 248 (21/24): 2239.
[6] Sommer W J, Weck M. Coord. Chem. Rev., 2007, 251(5/6): 860.
[7] Baker M V, Brown D H, Simpson P V, Skelton B W, White A H, Williams C C. J. Organomet. Chem., 2006, 691(26): 5485.
[8] Fortman G C, Nolan S P. Chem. Soc. Rev., 2011, 40: 5151.
[9] Velazquez H D, Verpoort F. Chem. Soc. Rev., 2012, 41: 7032.
[10] Corberan R, Mas-Marza E, Peris E. Eur. J. Inorg. Chem., 2009, (13): 1700.
[11] Poyatos M, Mata J A, Peris E. Chem. Rev., 2009, 109(8): 3677.
[12] Geier M, Gagne M R. J. Am. Chem. Soc., 2014, 136(8): 3032.
[13] Lersch M, Tilset M. Chem. Rev., 2005, 105(6): 2471.
[14] Field L D, Ward A. J. Organomet. Chem., 2003, 681(1/2): 91.
[15] Marciniec B, Guliński J. J. Organomet. Chem., 1983, 253(3): 349.
[16] Sommer L H, Pietrusza E W, Whitmore F C. J. Am. Chem. Soc., 1947, 69(1): 188.
[17] 白赢(Bai Y), 彭家建(Peng J J), 胡应乾(Hu Y Q), 厉嘉云(Li J Y), 来国桥(Lai G Q), 蒋剑雄(Jiang J X). 化学进展(Progress in Chemistry), 2009, (12): 2613.
[18] 厉嘉云(Li J Y), 彭家建(Peng J J), 李小年(Li X N), 马磊(Ma L), 白赢(Bai Y), 张国栋(Zhang G D), 来国桥(Lai G Q). 有机化学(Chinese Journal of Organic Chemistry), 2010, (10): 1468.
[19] Markó I E, Stérin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq J P. Science, 2002, 298: 204.
[20] Markó I E, Stérin S, Buisine O, Berthon G, Michaud G, Tinant B, Declercq J P. Adv. Synth. Catal., 2004, 346(12): 1429.
[21] Berthon-Gelloz G, Buisine O, Brière J F, Michaud G, Stérin S, Mignani G, Tinant B, Declercq J P, Chapon D, Markó I E. J. Organomet. Chem., 2005, 690(24/25): 6156.
[22] De Bo G, Berthon-Gelloz G, Tinant B, Markó I E. Organometallics, 2006, 25(10): 1881.
[23] Berthon-Gelloz G, Schumers J M, De Bo G, Markó I E. J. Org. Chem., 2008, 73(11): 4190.
[24] Sprengers J W, Mars M J, Duin M A, Cavel K J, Elsevier C J. J. Organomet. Chem., 2003, 679(2): 149.
[25] Dunsford J J, Cavell K J, Kariuki B. J. Organomet. Chem., 2011, 696(1): 188.
[26] Silbestri G F, Flores J C, Jesús E de. Organometallics, 2012, 31(17): 3355.
[27] Ruiz-Varilla A M, Baquero E A, Silbestri G F, Gonzalez-Arellano C, Jesús E de, Flores J C. Dalton Trans., 2015, (44): 18360.
[28] Dierick S, Markó I E. In eEROS Encyclopedia of Reagents for Organic Synthesis. Eds.: Paquette L A, Crich D, Fuchs P L, Molander G. Wiley. New York. 2013.
[29] Dierick S, Vercruysse E, Berthon-Gelloz G, Markó I E. Chem.-Eur. J., 2015, 21(1): 1.
[30] Meister T K, Kück J W, Riener K, Pöthig A, Herrmann W A, Kühn F E. J. Catal., 2016, 337(1): 157.
[31] Zhang Y, Zhao L, Patra P K, Ying J Y. Adv. Synth. Catal., 2008, 350: 662.
[32] Gribble G W. Chem. Soc. Rev., 1998, 27: 395.
[33] Pisiewicz S, Junge K, Beller M. Eur. J. Inorg. Chem., 2014, (14): 2345.
[34] Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc., 2010, 132(6): 1770.
[35] Das S, Join B, Junge K, Beller M. Chem. Commun., 2012, 48: 2683.
[36] Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem., Int. Ed., 2009, 48(50): 9507
[37] Hanada S, Tsutsumi E, Motoyama Y, Nagashima H. J. Am. Chem. Soc., 2009, 131(41): 15032.
[38] Poyatos M, Maisse-Franois A, Bellemin-Laponnaz S, Gade L H. Organometallics, 2006, 25(10): 2634.
[39] Hu J J, Li F, Hor T S A. Organomeallics, 2009, 28(4): 1212.
[40] Lu C X, Gu S J, Chen W Z, Qiu H Y. Dalton Trans., 2010, (39): 4198.
[41] Taige M A, Ahrens S, Strassner T. J. Organomet. Chem., 2011, 696(17): 2918.
[42] Munz D, Allolio C, Meyer D, Micksch M, Roessner L, Strassner T. J. Organomet. Chem., 2015, 794: 330.
[43] Bolbat E, Suarez-Alcantara K, Canton S E, Wendt O F. Inorg. Chim. Acta, 2016, 445: 129.
[44] Fürstner A. Chem. Soc. Rev., 2009, 38: 3208.
[45] Fürstner A, Szillat H, Stelzer F. J. Am. Chem. Soc., 2000, 122(28): 6785.
[46] Ferrer C, Raducan M, Nevado C, Claverie C K, Echavarren A M. Tetrahedron, 2007, 63(27): 6306.
[47] Blum J, Beer-Kraft H, Badrieh Y. J. Org. Chem., 1995, 60(17): 5567.
[48] Nieto-Oberhuber C, Munoz M P, Bunuel E, Nevado C, Cardenas D J, Echavarren A M. Angew. Chem., Int. Ed., 2004, 43(18): 2402.
[49] Kim S M, Park J H, Choi S Y, Chung Y K. Angew. Chem., Int. Ed., 2007, 46(32): 6172.
[50] Shibata T, Kobayash Y, Maekawa S, Toshida N, Takagi K. Tetrahedron, 2005, 61(38): 9018.
[51] Brissy D, Skander M, Retailleau P, Frison G, Marinetti A. Organometallics, 2009, 28(1): 140.
[52] Brissy D, Skander M, Retailleau P, Marinetti A. Organometallics, 2007, 26(24): 5782.
[53] Brissy D, Skander M, Retailleau P, Marinetti A. Org. Lett., 2009, 11(10): 2137.
[54] Jullien H, Brissy D, Sylvain R, Retailleau P, Naubron J V, Gladiali S, Marinetti A. Adv. Synth. Catal., 2011, 353(7): 1109.
[55] Zhang Y, Jullien H, Brissy D, Retailleau P, Voituriez A, Marinetti A. ChemCatChem, 2013, 5: 2051.
[56] Jung I G, Seo J, Lee S I, Choi S Y, Chung Y K. Organometallic, 2006, 25: 4240.
[57] Zhang Z, Lee S D. Widenhoefer R A. J. Am. Chem. Soc., 2009, 131(15): 5372.
[58] Cao P, Cabrera J, Padilla R, Serra D, Rominger F, Limbach M. Organometallics, 2012, 31(3): 921.
[59] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2004, 104(6): 3079.
[60] Hintermann L, Labonne A. Synthesis, 2007, 2007: 1121.
[61] Chatt J, Guy R G, Duncanson L A. J. Chem. Soc., 1961, 827.
[62] Hiscox W C, Jennings P W. Organometallics, 1990, 9(7): 1997.
[63] Hartman J W, Hiscox W C, Jennings P W. J. Org. Chem., 1993, 58(26): 7613.
[64] Jennings P W, Hartman J W, Hiscox W C. Inorg. Chim. Acta., 1994, 222(1/2): 317.
[65] Tokunaga M, Wakatsuki Y. Angew. Chem. Int. Ed., 1998, 37(20): 2867.
[66] Almássy A, Nagy C E, Bényei A C, Joó F. Organometallics, 2010, 29(11): 2484.
[67] Czégéni C E, Papp G, Kathó Á, Joó F. J. Mol. Catal. A: Chem., 2011, 340(1): 1.
[68] Baquero E A, Silbestri G F, Gómez-Sal P, Flores J C, Jesús de. Organometallics, 2013, 32(9): 2814.
[69] Miura T, Murakami M. Chem. Commun., 2007, 217.
[70] Pubill-Ulldemolins C, Bo C, Mata J A, Fernández E. Chem. Asian J., 2010, 5(1): 261.
[71] Lillo V, Mata J A, Segarra A M, Peris E, Fernandez E. Chem. Commun., 2007: 2184.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[5] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[10] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[11] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[12] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[13] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[14] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.