中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 17-35 DOI: 10.7536/PC161210 Previous Articles   Next Articles

• Review •

Fluorescent Probes for the Recognition of Hypochlorous Acid

Haidong Li, Jiangli Fan, Xiaojun Peng*   

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21136002, 21421005).
PDF ( 1529 ) Cited
Export

EndNote

Ris

BibTeX

Hypochlorous acid (HClO) is generated from hydrogen peroxide and chloridion via the catalysis of myeloperoxidase (MPO) in vivo. Normally, HClO acts as omnipresent intracellular regulator within life cycle of the cell, activating signaling pathways for cell differentiation, migration, transmission, proliferation and immune in physiological and pathological processes. Therefore, it is of vital importance to the detection and recognition of hypochlorous acid. Owing to simple operation, high sensitivity, sensitivity, low detection limit, rapid response, excellent spatial and temporal (spatiotemporal) resolution and especially nondestructive characteristics, Fluorescent probe technique has been paid special attention to research the physiological function of hypochlorous acid in vivo. Based on the recognition mechanism of fluorescent probes with hypochlorous acid, this review mainly summarizes the research progress of fluorescent probe for the recognition of hypochlorous acid in last three years. The design strategy of molecular structures and response pattern of these probes are also discussed as well as biological application. The development direction and biological application of hypochlorous acid fluorescent probes are also prospected.

Contents
1 Introduction
2 Types of fluorescent probes for HClO
2.1 Oxidation deoximation reaction
2.2 Oxidation unsaturated double bond reaction
2.3 Oxidation p-methoxy phenol reaction
2.4 Oxidation anisidine reaction
2.5 Oxidation chalcogenide (S, Se and Te) reaction
2.6 Oxidative dehydrogenation reaction
2.7 Oxidation hydrazide reaction
2.8 Oxidation metal ion reaction
2.9 Other types of oxidation reaction
3 Conclusion and outlook

CLC Number: 

[1] Judd S J, Jeffrey J A. Water Res., 1995, 29:1203.
[2] Winterbourn C C. J. Clin. Invest., 1986, 78:545.
[3] Harrison J E, Schultz J. Journal Biol. Chem., 1976, 251:1371.
[4] Shepherd J, Hilderbrand S A, Waterman P, Heinecke J W, Weissleder R, Libby P. Chem. Biol., 2007, 14:1221.
[5] Winterbourn C C, Hampton M B, Livesey J H, Kettle A J. J. Biol. Chem., 2006, 281:39860.
[6] Winterbourn C C, Brennan S O. Biochem. J., 1997, 326:87.
[7] Dickinson B C, Chang C J. Nat. Chem. biol., 2011, 7:504.
[8] Winterbourn C C, Kettle A J. Free Radical Biol. Med., 2000, 29:403.
[9] Daugherty A, Dunn J L, Rateri D L, Heinecke J W. J. Clin. Invest., 1994, 94:437.
[10] Sugiyama S, Okada Y, Sukhova G K, Virmani R, Heinecke J W, Libby P. Am. J. Pathol., 2001, 158:879.
[11] Yap Y W, Whiteman M, Cheung N S. Cellular Signal., 2007, 19:219.
[12] Miljkovic-Lolic M, Silbergleit R, Fiskum G, Rosenthal R E. Brain Res., 2003, 971:90.
[13] Pattison D I, Davies M J. Biochemistry, 2006, 45:8152.
[14] Whiteman M, Rose P, Siau J L, Cheung N S, Tan G S, Halliwell B, Armstrong J S. Free Radical Biol. Med., 2005, 38:1571.
[15] Hazell L J, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. J. Clin. Invest., 1996, 97:1535.
[16] Bonanni A, Campanella L, Gatta T, Gregori E, Tomassetti M. Food Chem., 2007, 102:751.
[17] Ordeig O, Mas R, Gonzalo J, Del Campo F J, Muñoz F J, De Haro C. Electroanal., 2005, 17:1641.
[18] Soldatkin A P, Gorchkov D V, Martelet C, Jaffrezic-Renault N. Sens. Actuators, B 1997, 43:99.
[19] Soto N O, Horstkotte B, March J G, Alba P L, Martínez L L, Martín V C. Anal. Chim. Acta, 2008, 611:182.
[20] Cui K, Zhang D Q, Zhang G X, Zhu D B. Tetrahedron Lett., 2010, 51:6052.
[21] Hwang J, Choi M G, Bae J, Chang S. Org. Biomol. Chem., 2011, 9:7011.
[22] Yuan L, Wang L, Agrawalla B K, Park S, Zhu H, Sivaraman B, Peng J J, Xu Q, Chang Y. J. Am. Chem. Soc., 2015, 137:5930.
[23] Zhu B C, Li P, Shu W, Wang X, Liu C Y, Wang Y, Wang Z K, Wang Y W, Tang B. Anal. Chem., 2016, 88:12532.
[24] Li H D, Yao Q C, Fan J L, Jiang N, Wang J Y, Xia J, Peng X J. Chem. Commun., 2015, 51:16225.
[25] Li H D, Yao Q C, Fan J L, Du J J, Wang J Y, Peng X J. Dyes Pigments, 2016, 133:79.
[26] 李海东(Li H D), 姚起超(Yao Q C), 樊江莉(Fan J L), 杜健军(Du J J), 彭孝军(Peng X J). 应用化学(Chinese Journal of Applied Chemistry), 2016, 33(10):1109.
[27] Chen X Q, Zhou Y, Peng X J, Yoon J. Chem Soc Rev, 2010, 39:2120.
[28] Xu F, Li H D, Yao Q C, Fan J L, Wang J Y, Peng X J. J. Mater. Chem. B, 2016, 4:7363.
[29] Xiao H B, Li P, Zhang S, Zhang W, Zhang W, Tang B. Chem. Commun., 2016, 52:12741.
[30] Liu G J, Long Z, Lv H J, Li C Y, Xing G W. Chem. Commun., 2016, 52:10233.
[31] Wu T, Liu C, Chien C, Lin S. Chem. Eur. J., 2013, 19:11672.
[32] Goswami S, Paul S, Manna A. Dalton Trans., 2013, 42:10097.
[33] Wang Q, Liu C, Chang J J, Lu Y, He S, Zhao L C, Zeng X S. Dyes Pigments, 2013, 99:733.
[34] Xu Q L, Heo C H, Kim J A, Lee H S, Hu Y, Kim D, Swamy K M K, Kim G, Nam S J, Kim H M, Yoon J. Anal. Chem., 2016, 88:661.
[35] Wang P, Wu J, Di C X, Zhou R, Zhang H, Su P R, Xu C, Zhou P P, Ge Y S, Liu D, Liu W S, Tang Y. Biosens. Bioelectron., 2016. DOI:10.1016/j.bios.2016.10.050.
[36] Kawagoe R, Takashima I, Uchinomiya S, Ojida A. Chem. Sci., 2017. DOI:10.1039/c6sc03856e.
[37] 高敏(Gao M), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014,26(06):1065.
[38] Mao Z Q, Feng W Q, Li Z, Zeng L Y, Lv W J, Liu Z H. Chem. Sci., 2016, 7:5230.
[39] Wang C, Song X B, Han Z, Li X Y, Xu Y P, Xiao Y. ACS Chem. Biol., 2016, 11:2033.
[40] 景晓彤(Jing X T), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014, 26(05):866.
[41] Ren X T, Wang F, Lv J, Wei T W, Zhang W, Wang Y, Chen X Q. Dyes Pigments, 2016, 129:156.
[42] Chen C Y, Liu W, Xu C, Liu W S. Biosens. Bioelectron., 2016, 85:46.
[43] 杨润洁(Yang R J), 唐尧(Tang Y), 朱维平(Zhu W P). 高等学校化学学报(Chemical Journal of Chinese University), 2016, 37(04):643.
[44] Yin W Z, Zhu H J, Wang R Y. Dyes Pigments, 2014, 107:127.
[45] Zhao J, Li H J, Yang K, Sun S G, Lu A P, Xu Y Q. New J. Chem., 2014, 38:3371.
[46] Goswami S, Maity S, Maity A C, Das A K. Sens. Actuators B, 2014, 204:741.
[47] Wang B, Wen J, Gao K, Yan H, Xu Y Q, Li H J, Chen J X, Wang W, Sun S G. RSC Adv., 2016, 6:35315.
[48] Shi W, Xu L X, Xie Z F, Chen X. Dyes Pigments, 2016, 133:406.
[49] Wu W, Zhao Z, Dai X, Su L, Zhao B. Sens. Actuators B, 2016, 232:390.
[50] Chang C C, Wang F, Qiang J, Zhang Z J, Chen Y H, Zhang W, Wang Y, Chen X Q. Sens. Actuators B, 2017, 234:22.
[51] Lin W Y, Long L L, Chen B B, Tan W. Chem. Eur. J., 2009, 15:2305.
[52] Guo B P, Nie H L, Yang W, Tian Y, Jing J, Zhang X L. Sens. Actuators B, 2016, 236:459.
[53] Emrullaho?lu M, üçüncü M, Karaku?E. Chem. Commun., 2013, 49:7836.
[54] Kang J, Huo F J, Yue Y K, Wen Y, Chao J B, Zhang Y B, Yin C X. Dyes Pigments, 2017, 136:852.
[55] Wu G F, Zeng F, Wu S Z. Anal. Methods, 2013, 5:5589.
[56] Cheng G H, Fan J L, Sun W, Sui K, Jin X, Wang J Y, Peng X J. Analyst, 2013, 138:6091.
[57] Lou Z R, Li P, Song P, Han K L. Analyst, 2013, 138:6291.
[58] Xing P F, Gao K, Wang B, Gao J, Yan H, Wen J, Li W S, Xu Y Q, Li H J, Chen J X, Wang W, Sun S G. Chem. Commun., 2016, 52:5064.
[59] Wang X, Song F L, Peng X J. Dyes Pigments, 2016, 125:89.
[60] Zha J Y, Fu B Q, Qin C Q, Zeng L T, Hu X C. RSC Adv., 2014, 4:43110.
[61] Xu J C, Yuan H Q, Qin C Q, Zeng L T, Bao G. RSC Adv., 2016, 6:107525.
[62] Zhou L Y, Lu D Q, Wang Q Q, Hu S Q, Wang H F, Sun H Y, Zhang X B. Spectrochim Acta A, 2016, 166:129.
[63] Wu Y L, Wang J, Zeng F, Huang S L, Huang J, Xie H T, Yu C M, Wu S Z. ACS Appl. Mater. Interfaces, 2016, 8:1511.
[64] Sun Z, Liu F, Chen Y, Tam P K H, Yang D. Org. Lett., 2008, 10:2171.
[65] Hu J J, Wong N, Gu Q S, Bai X Y, Ye S, Yang D. Org. Lett., 2014, 16:3544.
[66] Zhang W J, Guo C, Liu L H, Qin J G, Yang C L. Org. Biomol. Chem., 2011, 9:5560.
[67] Koide Y, Urano Y, Kenmoku S, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:10324.
[68] Guo T, Cui L, Shen J N, Wang R, Zhu W P, Xu Y F, Qian X H. Chem. Commun., 2013, 49:1862.
[69] Liao Y, Wang M, Li K, Yang Z, Hou J, Wu M, Liu Y, Yu X. RSC Adv., 2015, 5:18275.
[70] Zhou X, Jiang Y, Zhao X, Guo D. Talanta, 2016, 160:470.
[71] Ye Z Q, Zhang R, Song B, Dai Z C, Jin D Y, Goldys E M, Yuan J L. Dalton Trans., 2014, 43:8414.
[72] Lu F, Nabeshima T. Dalton Trans., 2014, 43:9529.
[73] Kenmoku S, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:7313.
[74] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133:5680.
[75] Best Q A, Sattenapally N, Dyer D J, Scott C N, Mccarroll M E. J. Am. Chem. Soc., 2013, 135:13365.
[76] Xu Q L, Lee K, Lee S, Lee K M, Lee W, Yoon J. J. Am. Chem. Soc., 2013, 135:9944.
[77] Chen X Q, Lee K, Ren X T, Ryu J, Kim G. Nat. Protoc., 2016, 11:1219.
[78] Ding S S, Zhang Q, Xue S H, Feng G Q. Analyst, 2015, 140:4687.
[79] Zhou J, Li L H, Shi W, Gao X H, Li X H, Ma H M. Chem. Sci., 2015, 6:4884.
[80] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40:2508.
[81] Zhang R, Ye Z Q, Song B, Dai Z C, An X, Yuan J L. Inorg. Chem., 2013, 52:10325.
[82] Liu F Y, Gao Y L, Wang J T, Sun S G. Analyst, 2014, 139:3324.
[83] Wang X Z, Zhou L, Qiang F, Wang F Y, Wang R, Zhao C C. Anal. Chim. Acta, 2016, 911:114.
[84] Kim T, Park S, Choi Y, Kim Y. Chem. Asian J., 2011, 6:1358.
[85] Liu S, Vedamalai M, Wu S. Anal. Chim. Acta, 2013, 800:71.
[86] Tian F S, Jia Y, Zhang Y N, Song W, Zhao G J, Qu Z J, Li C Y, Chen Y H, Li P. Biosens. Bioelectron., 2016, 86:68.
[87] Liu S, Wu S. Org. Lett., 2013, 15:878.
[88] Wang B S, Li P, Yu F B, Song P, Sun X F, Yang S Q, Lou Z R, Han K L. Chem. Commun., 2013, 49:1014.
[89] Venkatesan P, Wu S. Analyst, 2015, 140:1349.
[90] Manjare S T, Kim J, Lee Y, Churchill D G. Org. Lett., 2014, 16:520.
[91] Li G P, Zhu D J, Liu Q, Xue L, Jiang H. Org. Lett., 2013, 15:2002.
[92] Cheng G H, Fan J L, Sun W, Cao J F, Hu C, Peng X J. Chem. Commun., 2014, 50:1018.
[93] Goswami S, Manna A, Paul S, Quah C K, Fun H K. Chem. Commun., 2013, 49:11656.
[94] Fan J L, Mu H Y, Zhu H, Wang J Y, Peng X J. Analyst, 2015, 140:4594.
[95] Li J W, Yin C X, Huo F J, Xiong K M, Chao J B, Zhang Y B. Sens. Actuators, B 2016, 231:547.
[96] Pang L F, Zhou Y M, Gao W L, Song H H, Wang X, Wang Y. RSC Adv., 2016, 6:105795.
[97] Chen X Q, Wang X C, Wang S J, Shi W, Wang K, Ma H M. Chem. Eur. J., 2008, 14:4719.
[98] Hou J, Wu M, Li K, Yang J, Yu K, Xie Y, Yu X. Chem. Commun., 2014, 50:8640.
[99] Long L L, Zhang D D, Li X F, Zhang J F, Zhang C, Zhou L P. Anal. Chim. Acta, 2013, 775:100.
[100] Cao L Y, Zhang R, Zhang W Z, Du Z B, Liu C J, Ye Z Q, Song B, Yuan J L. Biomaterials, 2015, 68:21.
[101] Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Eur. J., 2012, 18:2700.
[102] Zhang Y R, Zhao Z M, Miao J Y, Zhao B X. Sens. Actuators, B 2016, 229:408.
[103] Zhang Y R, Meng N, Miao J Y, Zhao B X. Chem. Eur. J., 2015, 21:19058.
[104] Lou X D, Zhang Y, Li Q Q, Qin J G, Li Z. Chem. Commun., 2011, 47:3189.
[105] Huo F J, Zhang J J, Yang Y T, Chao J B, Yin C X, Zhang Y B, Chen T G. Sens. Actuators, B, 2012, 44:166.
[106] Zhu H, Fan J L, Wang J Y, Mu H Y, Peng X J. J. Am. Chem. Soc., 2014, 136:12820.
[107] Fan J L, Mu H Y, Zhu H, Du J J, Jiang N, Wang J Y, Peng X J. Ind. Eng. Chem. Res., 2015, 54:8842.
[108] Zhou Y, Li J Y, Chu K H, Liu K, Yao C, Li J Y. Chem. Commun., 2012, 48:4677.
[109] Chen W C, Venkatesan P, Wu S P. Anal. Chim. Acta, 2015, 882:68.
[110] Huang Y, Zhang P S, Gao M, Zeng F, Qin A J, Wu S Z, Tang B Z. Chem. Commun., 2016, 52:7288.
[1] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[7] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[8] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[9] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[10] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[11] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[12] Jiang Yan, Xu Yi, Wang Renjie, Su Xi, Dong Chunyan. Application of Novel Nano Fluorescent Probes for Bacteria Detection on the Microchip [J]. Progress in Chemistry, 2015, 27(9): 1240-1250.
[13] Fu Yang, Yan Fanyong, Zheng Tancheng, Mu Xueling, Sun Fengzhan, Chen Li. Reactive Rhodamine Fluorescent Probes [J]. Progress in Chemistry, 2015, 27(9): 1213-1229.
[14] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.
[15] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.