中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 563-578 DOI: 10.7536/PC161202 Previous Articles   

• Review •

Transformation of Lignin and Its Model Compounds into Value-Added Chemicals Using Sulfide Catalysts

Na Ji1,2, Jingjing Song1,2, Xinyong Diao1,2, Chunfeng Song1,2, Qingling Liu1,2, Mingyuan Zheng3   

  1. 1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China;
    2. Key Laboratory of Biomass-Derived Gas and Oil for Chinese Petrochemical Industry, Tianjin 300350, China;
    3. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21503144,21406165,51506147,21376239),the Major Projects of the National Natural Science Foundation of China (No.21690083),and the Tianjin Research Program of Application Foundation and Advanced Technique (No.16JCQNJC05400,15JCQNJC08500).
PDF ( 610 ) Cited
Export

EndNote

Ris

BibTeX

Lignin is mainly composed of hydroxy-substituted or methoxylated phenyl propane structures and serves as the only renewable bulk feedstock in nature for producing aromatic chemicals. By using suitable catalysts, the long chain structures of lignin can be selectively broken down to obtain different target products. This has been regarded as an important approach for the comprehensive utilization of lignin. Due to the high activity of hydrodeoxygenation, transition metal sulfide catalysts have been used in lignin conversion in recent decades. In this review, the application of transition metal sulfide catalysts in the catalytic conversions of lignin and its model compounds are summarized. The active components, support materials, reaction conditions and reaction mechanism are presented in detail. The existing challenges of sulfide catalysts in the degradation of lignin are discussed. Finally, potential solutions and future trends of this field are presented.
Contents
1 Introduction
2 The application of sulfide catalysts in the hydrodeoxygenation of lignin model compounds
2.1 Mo-based sulfide catalyst
2.2 Other sulfide catalysts
3 The application of sulfide catalysts in the degradation of lignin raw materials
4 Conclusion

CLC Number: 

[1] Dapsens P Y, Mondelli C, Pérez-Ramírez J. ACS Catal., 2012, 2:1487.
[2] Hanson S K, Baker R T, Gordon J C, Scott B L, Thorn D L. Inorg. Chem., 2010, 49:5611.
[3] 张勤生(Zhang Q S), 王来来(Wang L L). 分子催化(Journal of Molecular Catalysis), 2013, 27(01):89.
[4] 路瑶(Lu Y), 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25(05):838.
[5] Song Q, Cai J Y, Zhang J J, Yu W Q, Wang F, Xu J. Chin. J. Catal., 2013, 34:651.
[6] Ma R, Hao W Y, Ma X L, Tian Y, Li Y D. Angew. Chem. Int. Ed., 2014, 126:7438.
[7] Azadi P, Inderwildi O R, Farnood R, King D A. Renew. Sustain. Energy Rev., 2013, 21:506.
[8] 龙金星(Long J X), 徐莹(Xu Y), 王铁军(Wang T J), 张兴华(Zhang X H), 张琦(Zhang Q), 马隆龙(Ma L L), 李宇萍(Li Y P). 新能源进展(Advances in New and Renewable Energy), 2014, 2(02):83.
[9] Rinaldi R, Jastrzebski R, Clough M T, Ralph J, Kennema M, Bruijnincx P C A, Weckhuysenet B M. Angew. Chem. Int. Ed., 2016, 55:8164.
[10] Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115:11559.
[11] 包冲荣(Bao C R), 殷平(Yin P), 唐清华(Tang Q H), 陈磊(Chen L). 化工时刊(Chemical Industry Times), 2008, 22(12):53.
[12] 王安杰(Wang A J), 王瑶(Wang Y), 遇治权(Yu Z Q), 董婷(Dong T), 李翔(Li X), 陈永英(Chen Y Y). 大连理工大学学报(Journal of Dalian University of Technology), 2016, 56(03):321.
[13] Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110:3552.
[14] Alpert S B, Shuman S C. Canadian Patent 851709, 1970.
[15] Elliott D C. Am. Chem. Soc. Div. Pet. Chem. Prepr., 1983, 28:3.
[16] Bredenberg J B, Huuska M, Räty J, Korpio M. J. Catal., 1982, 77:242.
[17] Gevert B S, Otterstedt J E, Massoth F E. Appl. Catal., 1987, 31:119.
[18] Petrocelll F P, Kleln M T. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24:635.
[19] Hurfft S J, Kleln M T. Ind. Eng. Chem. Fundam, 1983, 22:426.
[20] Bredenberg B S, Huuska M, Toropainen P. J. Catal., 1989, 120:401.
[21] Odebunmi E O, Ollis D F. J. Catal., 1983, 80:56.
[22] Jongerius A L, Jastrzebski R, Bruijnincx P C A, Weckhuysen B M. J. Catal., 2012, 285:315.
[23] Itthibenchapong V, Ratanatawanate C, Oura M, Faungnawakij K. Catal. Commun., 2015, 68:31.
[24] Leiva K, Sepúlveda C, García R, Fierro J L G, Reyes P, Villarroel M, Escalona N. J. Chil. Chem. Soc., 2013, 58:1947.
[25] Bui V N, Laurenti D, Afanasiev P, Geantet C. Appl. Catal. B, 2011, 101:239.
[26] Laurent E, Delmon B. Appl. Catal. A, 1994, 109:77.
[27] Wildschut J. Doctoral Dissertation of University of Groningen, 2009.
[28] Badawi M, Paul J F, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil J M, El Fallah J, Gilson J P, Mariey L, Travert A, Maugé F. J. Catal., 2011, 282:155.
[29] Popov A, Kondratieva E, Mariey L, Goupil J M, El Fallah J, Gilson J, Travert A, Maugé F. J. Catal., 2013, 297:176.
[30] 包建国(Bao J G), 杨运泉(Yang Y Q), 王威燕(Wang W Y), 蒋新民(Jiang X M), 李娅(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39:59.
[31] Breysse M, Afanasiev P, Geantet C, Vrinat M. Catal. Today, 2003, 86:5.
[32] Song W, Liu Y, Barath E, Zhao C, Lercher J. Green Chem., 2014, 17:1204.
[33] Ferrari M, Delmon B, Grange P. Micropor. Mesopor. Mater., 2002, 56:279.
[34] Ferrari M, Maggi R, Delmon B, Grange P. J. Catal., 2001, 198:47.
[35] Ferrari M, Delmon B, Grange P. Carbon, 2002, 40:497.
[36] Centeno A, Laurent E, Delmon B. J. Catal., 1995, 154:288.
[37] De la Puente G, Gil A, Pis J J, Grange P. Langmuir, 1999, 15:5800.
[38] Ruiz P E, Frederick B G, de Sisto W J, Austin R N, Ra dovic L R, Leiva K, García R, Escalona N, Wheeler M C. Catal. Commun., 2012, 27:44.
[39] Klicpera T, Zdra?il M. J. Catal., 2002, 206:314.
[40] Yang Y, Gilbert A, Xu C B. Appl. Catal. A, 2009, 360:242.
[41] Loricera C V, Pawelec B, Infantes-Molina A, Álvarez-Galván M C, Huirache-Acuña R, Nava R, Fierro J L G. Catal. Today, 2011, 172:103.
[42] 王威燕(Wang W Y), 杨运泉(Yang Y Q), 罗和安(Luo H A), 杨彦松(Yang Y S), 胡韬(Hu T), 刘文英(Liu W Y), 何兵(He B), 钦柏豪(Qin B H). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39(12):924.
[43] Quaschning V, Deutsch J, Druska P, Niclas H J, Kemnitz E. J. Catal., 1998, 177:164.
[44] Pratt K C, Sanders J V, Christov V. J. Catal., 1990, 124:416.
[45] Payen E, Gengembre L, Mauge F, Duchet J C, Lavalley J C. Catal. Today, 1991, 10:521.
[46] Afanasiev P, Geantet C, Breysse M. J. Catal., 1995, 153:17.
[47] 程新孙(Cheng X S), 罗来涛(Luo L T), 鲁勋(Lu X). 环境科学研究(Research of Environmental Sciences), 2008, 21(1):139.
[48] Bui V N, Laurenti D, Delichère P, Geantet C. Appl. Catal. B,2011, 101:246.
[49] Ratcliff M A, Johnson D K, Posey F L, Chum H L. Appl. Biochem. Biotechnol., 1988, 17:151.
[50] Girgis M J, Gates B C. Ind. Eng. Chem. Res., 1991, 30:2021.
[51] Viljava T R, Krause A O I. Stud. Surf. Sci. Catal., 1997, 106:343.
[52] Massoth F E, Politzer P, Concha M C, Murray J S, Jakow ski J, Simons J. J. Phys. Chem. B, 2006, 110:14283.
[53] Ryymin E, Honkela M L, Viljava T, Krause A O I. Appl. Catal. A, 2010, 389:114.
[54] Viljava T R, Komulainen R S, Krause A O I. Catal. Today, 2000, 60:83.
[55] Viljava T R, Saari E R M, Krause A O I. Appl. Catal. A, 2001, 209:33.
[56] ?enol O, Ryymin E M, Viljava T R, Krause A O I. J. Mol. Catal. A-Chem, 2007, 277:107.
[57] Hensen E J M, Kooyman P J, van der Meer Y, van der Kraan A M, de Beer V H J, van Veen J A R, van Santen R A. J. Catal., 2001, 199:224.
[58] Schweiger H, Raybaud P, Kresse G, Toulhoat H. J. Catal., 2002, 207:76.
[59] Yang Y Q, Tye C T, Smith K J. Catal. Commun., 2008, 9:1364.
[60] Yoosuk B, Tumnantong D, Prasassarakich P. Chem. Eng. Sci., 2012, 79:1.
[61] Yoosuk B, Tumnantong D, Prasassarakich P. Fuel, 2012, 91:246.
[62] Wang W Y, Zhu G H, Li L, Tan S, Wu K, Zhang X Y, Yang Y Q. Fuel, 2016, 174:1.
[63] Wang W Y, Tan S, Zhu G H, Wu K, Tan L, Li Y Z, Yang Y Q. RSC Adv., 2015, 5:94040.
[64] Guo J, Chen X, Yi Y J, Li W Z, Liang C H. RSC Adv., 2014, 4:16716.
[65] 刘宁(Liu N). 大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2013.
[66] Genuit D, Afanasiev P, Vrinat M. J. Catal., 2005, 235:302.
[67] Kouzu M, Uchida K, Kuriki Y, Ikazaki F. Appl. Catal. A, 2004, 276:241.
[68] Wang W Y, Li L, Zhang K, Qiao Z Q, Liu P L, Yang Y Q. Reac. Kinet. Mech. Cat., 2014, 113:417.
[69] Wang W Y, Li L, Wu K, Zhu G, Tan S, Li W, Yang Y. RSC Adv., 2015, 5:61799.
[70] Yoosuk B, Song C S, Kim J H, Ngamcharussrivichai C, Prasassarakich P. Catal. Today, 2010, 149:52.
[71] Wang W Y, Zhang K, Qiao Z Q, Li L, Liu P L, Yang Y Q. Ind. Eng. Chem. Res., 2014, 53:10301.
[72] Wang W Y, Zhang K, Li L, Wu K, Liu P L, Yang Y Q. Ind. Eng. Chem. Res., 2014, 53:19001.
[73] Wang W Y, Li L, Wu K, Zhang K, Jie J, Yang Y Q. Appl. Catal. A, 2015, 495:8.
[74] Wang W Y, Li L, Wu K, Zhu G H, Tan S, Liu Y, Yang Y Q. RSC Adv, 2016, 6:31265.
[75] Wang W Y, Li L, Tan S, Wu K, Zhu G H, Liu Y, Xu Y, Yang Y Q. Fuel, 2016, 179:1.
[76] Plantenga F L, Leliveld R G. Appl. Catal. A, 2003, 248:1.
[77] Yi Y J, Zhang B S, Jin X, Wang L, Williams C T, Xiong G, Su D S, Liang C H. J. Mol. Catal. A-Chem., 2011, 351:120.
[78] Wang W Y, Zhang K, Qiao Z Q, Li L, Liu P L, Yang Y Q. Catal. Commun., 2014, 56:17.
[79] Wang C L, Wu Z Z, Tang C Y, Li L H, Wang D Z. Catal. Commun., 2013, 32:76.
[80] Wang W Y, Wu K, Li L, Tan S, Zhu G H, Li W S, He Z Q, Yang Y Q. Catal. Commun., 2016, 74:60.
[81] Ji N, Wang X Y, Weidenthaler C, Spliethoff B, Rinaldi R. ChemCatChem, 2015, 7:960.
[82] Hong Y K, Lee D W, Eom H J, Lee K Y. J. Mol. Catal. A-Chem., 2014, 392:241.
[83] Escalona N, Gil Llambias F J, Vrinat M, Nguyen T S, Laurenti D, López Agudo A. Catal. Commun., 2007, 8(3):285.
[84] Ruiz P E, Leiva K, Garcia R, Reyes P, Fierro J L G, Escalona N. Appl. Catal. A, 2010, 384:78.
[85] Sepúlveda C, Escalona N, García R, Laurentib D, Vrinat M. Catal. Today, 2012, 195:101.
[86] Leiva K, Martinez N, Sepulveda C, García R, Jiménez C A, Laurenti D, Vrinat M, Geantet C, Fierro J L G, Ghampson I T, Escalona N. Appl. Catal. A, 2015, 490:71.
[87] 聂明才(Nie M C), 霍淑平(Huo S P), 孔振武(Kong Z W). 林产化学与工业(Chemistry and Industry of Forest Products), 2010, (05):115.
[88] Grilc M, Likozar B, Levec J. Appl. Catal. B, 2014, 150/151:275.
[89] Veryasov G, Grilc M, Likozar B, Jesih A. Catal. Commun., 2014, 46:183.
[90] Zhou L J, Ma Q H, Xing X T, Zhou J H. Energ. Source, Part A, 2016, 38:723.
[91] Tian W Q, Li N X, Liu J H, Wang M, Deng J Q, Zhou J C, Ma Q H. Energy Fuels, 2015, 29:255.
[92] Joffres B, Nguyen M T, Laurenti D, Lorentz C, Souchon V, Charon N, Daudin A, Quignard A, Geantet C. Appl. Catal. B, 2016, 184:153.
[93] Kumar C R, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Barta K, Heeres H J. Green Chem., 2015, 17:4921
[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Fusheng Pan, Yuan Yao, Jie Sun. Catalysis in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(3): 442-461.
[4] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[5] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[6] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[7] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[8] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[9] Shaofei Zhao, Peng Liu, Gao Cheng, Lin Yu, Huaqiang Zeng. Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials [J]. Progress in Chemistry, 2020, 32(10): 1582-1591.
[10] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[11] Jinglin Zhai, Xin Hu, Chengkou Liu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(9): 1293-1302.
[12] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[13] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[14] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[15] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.