中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 198-209 DOI: 10.7536/PC161104 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries

Wuwei Yan1, Yongning Liu2, Shaokun Chong2, Yaping Zhou2, Jianguo Liu1*, Zhigang Zou1*   

  1. 1. School of Modern Engineering and Applied Science, Nanjing University, Nanjing 210093, China;
    2. School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities, PAPD of Jiangsu Higher Education Institutions, Six Talent Peaks Project and Qing Lan Project of Jiangsu Province.
PDF ( 2333 ) Cited
Export

EndNote

Ris

BibTeX

"With the development of mobile communication equipment and electric cars, there is an increasing demand for high capacity lithium-ion batteries. It is difficult for the present commercialized lithium-ion power batteries to meet the requirement of one charge to travel above 500 km, because of low discharge capacity, like lithium iron phosphate and ternary cathode material, possessing the discharge capacity lower than 180 mAh/g. Therefore, the specific capacity of cathode materials has become a bottleneck to increase the energy density of lithium-ion batteries. Lithium-rich cathode materials with large specific capacity (≥250 mAh/g), high discharge voltage (3.8 V), and high theory energy density (900 Wh/kg) are thought as ideal cathode material of power batteries for electric cars in the future, so, it is of great realistic significance to study the lithium-rich cathode materials with high specific capacity. This paper reviews the development of cathode materials for lithium-ion batteries as well as the situation of recent commercial cathode materials with low specific capacity. Structures and electrochemical properties of lithium-rich cathode materials as a new next-generation higher capacity are summarized, and the discharge mechanism and the latest progress in modifications are presented. Moreover, some problems related with lithium-rich materials for high energy-density lithium-ion batteries are presented, followed by the corresponding ideas and approaches of solution.

Contents
1 Introduction
2 Structural research of lithium-rich materials
3 Investigation on electrochemical behaviors of lithium-rich materials
3.1 Interpretation on the first charge/discharge
3.2 Interpretation on capacity and voltage fade
4 Modified research on lithium-rich materials
4.1 Surface coating
4.2 Bulk doping
4.3 Nanosizing
4.4 Hierarchical structure
4.5 Concentration-gradient distribution
4.6 Layered/Spinel heterostructure
4.7 Other methods
5 Conclusion

CLC Number: 

[1] Fong R, Sacken U Y, Dahn J R. J. Electrochem. Soc., 1990, 137:2009.
[2] Manthiram A, Knight J C, Myung S, Oh S, Sun Y. Adv. Energy Mater., 2016, 6:1501010.
[3] Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Mater. Res. Bull., 1980, 15:783.
[4] Yang S, Croguennec L, Delmas C, Nelson E C, O'Keefe M A. Nat. Mater., 2003, 2:465.
[5] Wichham D G, Croft W J. Phys. Chem. Solids, 1958, 7:354.
[6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144:1188.
[7] Liu Z, Yu A, Lee J Y. J. Power Sources, 1999, 81:416.
[8] Ohzuku T, Makimura Y. Chem. Lett., 2001, 1:642.
[9] Bettge M, Li Y, Gallaghe K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham D P. J. Electrochem. Soc., 2013, 160:A2046.
[10] 杜柯(Du K), 胡国荣(Hu G R). 科学通报(Chinese Sci. Bull.), 2012, 57(10):794.
[11] Kim J, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16:1996.
[12] Johnson C S, Kim J, Lefief C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun., 2004, 6:1085.
[13] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005, 15:2257.
[14] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17:3114.
[15] Numata K, Sakaki C, Yamanaka S. Chem. Lett., 1997, 8:725.
[16] Numata K, Sakaki C, Yamanaka S. Solid State Ionics, 1999, 117:257.
[17] Fell C R, Qian D, Carroll K J, Chi M, Jones J L, Meng Y S. Chem. Mater., 2013, 25:1621.
[18] Lu Z, Beaulieu L Y, Donaberger R A, Thomas C L, Dahn J R. J. Electrochem. Soc., 2002, 149:A778.
[19] Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. Chem. Mater., 2011, 23:3614.
[20] Meng Y S, Ceder G, Grey C P, Yoon W, Jiang M, Bre'ger J, Shao-Horn Y. Chem. Mater., 2005, 17:2386.
[21] Mohanty D, Huq A, Payzant A E, Sefat A S, Li J, Abraham D P, Wood Ⅲ D L, Daniel C. Chem. Mater., 2013, 25:4064.
[22] Thackeray M M, Kang S, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006, 8:1531.
[23] Yu H, Ishikawa R, So Y, Shibata N, Kudo T, Zhou H, Ikuhara Y. Angew. Chem. Int. Ed., 2013, 52:5969.
[24] Bareño J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Po S V, Petrov I, Abraham D P. Chem. Mater., 2011, 23:2039.
[25] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16:1996.
[26] Yu H, So Y G, Kuwabara A, Tochigi E, Shibata N, Kudo T. Nano Lett., 2016, 16:2907.
[27] McCalla E, Lowartz C M, Brown C R, Dahn J R. Chem. Mater., 2013, 25:912.
[28] Shunmugasundaram R, Arumugam R S, Dahn J R. Chem. Mater., 2015, 27:757.
[29] Shunmugasundaram R, Arumugam R S, Harris K J, Goward G R, Dahn J R. Chem. Mater., 2016, 28:55.
[30] Mccalla E, Rowe A W, Shunmugasundaram R, Dahn J R. Chem. Mater., 2013, 25:989.
[31] Lee J, Urba A, Li X, Su D, Hautier G, Ceder G. Science, 2014, 343:519.
[32] Seo D H, Lee J, Urban A, Malik R, Kang S Y, Ceder G. Nat. Chem., 2016. 8:692.
[33] Abdellahi A, Urban A, Dacek S, Ceder G. Chem. Mater., 2016, 28:692.
[34] Abdellahi A, Urban A, Dacek S, Ceder G. Chem. Mater., 2016, 28:3659.
[35] Urban A, Seo D H, Ceder G. npj Comput. Mater., 2016, 2:16002.
[36] Xu B, Fell C R, Chic M, Meng Y S. Energy Environ. Sci., 2011, 4:2223.
[37] Lim J, Moon J, Gim J, Kim S, Kim K, Song J, Kang J, Im W B, Kim J. Chem. Mater., 2012, 22:11772.
[38] Rossouw M H, Thackeray M M. Mater. Res. Bull.,1991, 26:463.
[39] Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993, 104:464.
[40] 严武渭(Yan W W). 西安交通大学博士论文(Doctoral Dissertation of Xi'an Jiaotong University), 2016.
[41] Yan W, Liu Y, Chong S, Wu Y. RSC Adv., 2016, 6:23677.
[42] Robertson A D, Bruce P G. Chem. Mater., 2003, 15:1984.
[43] Robertson A D, Bruce P G. Electrochem. Solid State Lett., 2004:A294.
[44] Armstrong A R, Holzapfel M, Novàk P, Johnson C S, Kang S, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128:341.
[45] Armstrong A R, Robertson A D, Bruce P G. J. Power Sources, 2005, 146:275.
[46] Yu D Y W, Yanagida K, Kato Y, Nakamura H. J.Electrochem. Soc., 2009, 156:A417.
[47] Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J H, Chadwick A V, Duda L C, Bruce P G. Nat. Chem., 2016, 8:684.
[48] Mccalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, Tendeloo G V, Dominko R, Tarascon J M. Science, 2015, 350:1516.
[49] Saubanère M, Mccalla E, Tarascon J M, Doublet M L. Energy Environ. Sci., 2016, 9:984.
[50] Grimaud A, Hong W T, Shao-Horn Y, Tarascon J M. Nat. Mater., 2016, 15:121.
[51] Chen C J, Pang K W, Mori T, Peterson V K, Sharma N, Lee P H, Wu S, Wang C C, Song Y F, Liu R S. J. Am. Chem. Soc., 2016, 138:8824.
[52] Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J. Nano Lett., 2013, 13:3824.
[53] Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abrahama D P. J. Electrochem. Soc., 2013, 160:A2046.
[54] Li Y, Bareno J, Bettg M, Abraham D P. J. Electrochem. Soc., 2015, 162:A155.
[55] Ito A, Shoda K, Sato Y, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196:4785.
[56] Boulineau A, Simonin L, Colin J, Can De' vet E, Daniel L, Patoux S. Chem. Mater., 2012, 24:3558.
[57] Gu M, Genc A, Belharouak I, Wang D P, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browing N D, Liu J, Wang C M. Chem. Mater., 2013, 25:2319.
[58] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J, Browning N D, Liu J, Wang C. Nano Lett., 2012, 12:5186.
[59] Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S. Nano Lett., 2013, 13:3857.
[60] Yan P, Nie A, Zheng J, Zhou Y, Lu D, Zhang X, Xu R, Belharouak I, Zu X, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang J G, Wang C M. Nano Lett., 2014, 15:514.
[61] Dixit H, Zhou W, Idrobo J C, Nanda J, Cooper V R. ACS Nano, 2014, 8:12710.
[62] Zheng J, Meng G, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang J. Nano Lett., 2014, 14:2628.
[63] Zheng J, Xu P, Gu M, Gu M, Xiao J, Browning N D, Yan P, Wang C, Zhang J. Chem. Mater., 2015, 27:1381.
[64] Zheng J, Gu M, Xiao J, Xiao J, Polzin B J, Yan P, Chen X, Wang C, Zhang J. Chem. Mater., 2014, 26:6320.
[65] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J, Browning N D, Liu J, Wang C. ACS Nano, 2012, 7:760.
[66] Croy J R, Kim D, Balasubramanian M, Gallagher K, Kang S, Thackeray M M. J. Electrochem. Soc., 2012, 159:A781.
[67] Croy J R, Gallagher K G, Balasubramanian M, Chen Z, Ren Y, Kim D, Kang S, Dees D W, Thackeray M M. J. Phys. Chem. C, 2013, 117:6525.
[68] Croy J R, Mahalingam B, Gallagher K G, Burrell A K. Acc. Chem. Res., 2015, 48:2813.
[69] Yan W, Liu Y, Guo S, Jiang T. ACS Appl. Mater. Interfaces, 2016, 8:12118.
[70] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, Walker W, Prakash A S, Hassine M Ben, Dupont L, Tarascon J M. Nat. Mater., 2013, 12:827.
[71] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14:230.
[72] Wang L, Hu Z, Zhao K, Luo Y, Wei Q, Tang C, Hu P, Ren W, Mai L. Sci. China Mater., 2016, 59:95.
[73] Wu Y, Manthiram A. Solid State Ionics, 2009, 180:50.
[74] Park K S, Benayad A, Park M S, Choia W, Ima D. Chem. Commun., 2010, 46:4190.
[75] Liu J, Reejajayan B, Manthiram A. J. Phys. Chem. C, 2010, 114:9528.
[76] West W C, Soler J, Smart M C, Ratnakumar B V, Firdosy S, Ravi V, Anderson M S, Hrbacek J, Lee E S, Manthiram A. J. Electrochem. Soc., 2011, 158:A883.
[77] Wang Q Y, Liu J, Murugan A V, Manthiram A. J. Mater. Chem., 2009, 19:4965.
[78] Liu H, Qian D, Verde M G, Zhang M, Baggetto L, An K, Chen Y, Carro K J, Lau D, Chi M, Veith G M, Meng Y S. ACS Appl. Mater. Interfaces, 2015, 7:19189.
[79] Zhao T, Li L, Chen R, Wu H. Nano Energy, 2015, 15:164.
[80] Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F. J. Mater. Chem. A, 2014, 2:18613.
[81] Song B, Lai M O, Liu Z, Liu H, Lu L. J. Mater. Chem. A, 2013, 1:9954.
[82] Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M. Angew. Chem. Int. Ed., 2015, 54:13058.
[83] Deng Y P, Fu F, Wu Z, Yin Z, Zhang T, Li J, Huang L, Sun S. J. Mater. Chem. A, 2016, 4:257.
[84] Xiang X, Knight J C, Li W, Manthiram A. J. Phys. Chem. C, 2014, 118:21826.
[85] Deng Z Q, Manthiram A. J. Phys. Chem. C, 2011, 115:7097.
[86] Du K, Yang F, Hu G R, Peng Z, Cao Y, Ryu S K. J. Power Sources, 2013, 244:29.
[87] Hong Y J, Choi S H, Sim C M, Lee J K, Kang Y C. Mater. Res. Bull., 2012, 47:4359.
[88] Yu L, Yang H, Ai X, Cao Y. J. Phys. Chem. B, 2005, 109:1148.
[89] Kim M G, Jo M, Hong Y S, Cho J. Chem. Commun., 2009, 2:218.
[90] Yang J, Cheng F, Zhang X, Gao H, Tao Z, Chen J. J. Mater. Chem. A, 2014:1636.
[91] Wei G Z, Lu X, Ke F S, Huang L, Li J T, Wang Z X, Zhou Z Y, Sun S G. Adv. Mater., 2010, 22:4364.
[92] Fu F, Xu G L, Wang Q, Deng Y P, Li X, Li J T, Huang L, Sun S G. J. Mater. Chem. A, 2013, 1:3860.
[93] Lim J, Moon J, Gim J, Kim S, Kim K, Song J, Kang J, Im W B, Kim J. J. Mater. Chem., 2012, 22:11772.
[94] Wang C C, Jarvis K A, Ferreira P J, Manthiram A. Chem. Mater., 2013, 25:3267.
[95] Oh P, Myeong S, Cho W, Lee M J, Ko M, Jeong H Y, Cho J. Nano Lett., 2014, 14:5965.
[96] Wang D, Ilias B, Zhou G, Amine K. Adv. Funct. Mater., 2013, 23:1070.
[97] Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Adv. Mater., 2014, 26:6756.
[98] Wang G, Wang X, Yi L, Yu R, Liu M, Yang X. J. Mater. Chem. A, 2016, 4:15929.
[99] Sun Y K, Myung S T, Kim M H, Prakash J, Amine K. J. Am. Chem. Soc., 2005, 127:13411.
[100] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8:320.
[101] Sun Y K, Chen Z, Noh H J, Lee D J, Jung H G, Ren Y, Wang S, Yoon C S, Myung S T, Amine K. Nat. Mater., 2012, 11:942.
[102] Koenig Jr G M, Belharouak I, Deng H, Sun Y K, Amine K. Chem. Mater., 2011, 23(7):1954.
[103] Yang X, Wang X Y, Wei Q, Shu H, Liu L, Yang S, Hu B, Song Y, Zou G, Hu L, Yi L. J. Chem. Mater., 2012, 22:19666.
[104] Yang X, Wang X Y, Zou G, Hu L, Shu H, Yang S, Liu L, Hu H, Yuan H, Hu B, Wei Q, Yi L. J. Power Sources, 2013, 232:338.
[105] Yu R, Wang X, Wang D, Ge L, Shu H, Yang X. J. Mater. Chem. A, 2015, 3:3120.
[106] Yang X, Wang X, Hu L, Zou G, Su S, Bai Y, Shu H, Wei Q, Hu B, Ge L, Wang D, Liu L. J. Power Sources, 2013, 242:589.
[107] Yang X, Wang D, Yu R, Bai Y, Shu H, Ge L, Guo H, Wei Q, Liu L, Wang X. J. Mater. Chem. A, 2014, 2:3899.
[108] Johnson C S, Li N, Vaughey J T, Hackney S A, Thackeray M M. Electrochem. Commun., 2005, 7:528.
[109] Park S H, Kang S H, Johnson C S, Amine K, Thackeray M M. Electrochem. Commun., 2007, 9:262.
[110] Kim D, Sandi G, Croy J R, Gallagher K G, Kang S H, Lee E, Slater M D, Johnson C S, Thackeray M M. J. Electrochem. Soc., 2013, 160:A31.
[111] Bhaskar A, Krueger S, Siozios V, Li J, Nowak S, Winter M. Adv. Energy Mater., 2015, 5:197.
[112] Lee E S, Huq A, Chang H Y, Manthiram A. Chem. Mater., 2012, 24:600.
[113] Bian X, Fu Q, Qiu H, Du F, Gao Y, Zhang L, Zou B, Chen G, Wei Y. Chem. Mater., 2015, 27:5745.
[114] Bian X, Fu Q, Pang Q, Gao Y, Wei Y, Zou B, Du F, Chen G. ACS Appl. Mater. Interfaces, 2016, 8:3308.
[115] Wang D, Yu R, Wang X, Long G, Yang X. Sci. Rep., 2015, 5:8403.
[116] Abouimrane A, Compton O C, Deng H, Belharouak I, Dikin D A, Nguyen S T, Amine K. Electrochem. Solid State Lett., 2011, 14:A126.
[117] Han J G, Lee S J, Lee J, Choi N S. ACS Appl. Mater. Interface, 2015, 7:8319.
[118] 其凡(Qi F). 中国粉体工业(China Powder Industry), 2015, 19:18.
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[5] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[6] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[7] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[8] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[9] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[10] Chen Ruwen, Tu Xinman, Chen Dezhi. Transition Metal Nitrides for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 416-423.
[11] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[12] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.
[13] Zhou Guanwei, He Yushi, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng. Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications [J]. Progress in Chemistry, 2012, 24(0203): 235-245.
[14] Ren Manman, Liu Suwen, Lu Qifang. Vanadium-Based Phosphates as Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(9): 1985-1992.
[15] Chen Xin, Zhang Naiqing, Sun Kening. 3d Transition-Metal Oxides as Anode Micro/Nano-Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(10): 2045-2054.