中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 359-372 DOI: 10.7536/PC161026 Previous Articles   Next Articles

• Review •

Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors

Yufu Chen1,2, Xianggao Li1,2, Yin Xiao1,2, Shirong Wang1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University,Tianjin 300350, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R&D Program of China (No. 2016YFB0401303) and the Natural Science Foundation of Tianjin (No.16JCZDJC37100).
PDF ( 1848 ) Cited
Export

EndNote

Ris

BibTeX

Organic field-Effect transistors (OFETs) as the primary building blocks of flexible electronics have been intensively studied, and considerable progresses on high performance materials development and multifunctional application have been recently made. Attributed to mild operating conditions and versatile manufacturing processes, solution process technologies become the appreciable choice for large-scale, low-cost OFETs fabrication. Compared with conjugated polymers, small molecular organic semiconductors reach a high degree of stacking density, ordering degree and material purity, which facilitate high performance devices fabrication. However, small molecular semiconductors bear poor film-forming ability, which hinders its solution processing technology development. Consequently, how to fabricate homogeneous, large area, well-defined small molecular semiconductors film, and large-scale, high performance devices array by different solution processing technologies becomes the hotspot in this field. This review provides a brief overview of recent advances in the solution processable small molecular organic semiconductors with high performance. Besides, according to the technology characteristics, the large-scale OFETs solution processing technologies are classified into drop casting, meniscus guided coating, and printing. Finally, the prospects and challenge for solution processed large-scale small molecular OFETs are also discussed.

Contents
1 Introduction
2 Solution processable small molecular organic semiconductors
2.1 p-Type small molecular organic semiconductors
2.2 n-Type small molecular organic semiconductors
2.3 Ambipolar small molecular organic semiconductors
3 Solution processing technologies of large-scale small molecular OFETs
3.1 Drop casting
3.2 Meniscus guided coating
3.3 Printing
3.4 Thin-film post-processing technology
4 Conclusion and outlook

CLC Number: 

[1] Mandal S, Noh Y. Semicond. Sci. Technol., 2015, 30(6): 64003.
[2] Khim D, Baeg K, Kang M, Lee S, Kim N, Kim J, Lee G, Liu C, Kim D, Noh Y. ACS Appl. Mater. Interfaces, 2013, 5(23): 12579.
[3] Uno M, Cha B, Kanaoka Y, Takeya J. Org. Electron., 2015, 20: 119.
[4] Kim D, Quang Trung T, Hwang B, Kim J, Jeon S, Bae J, Park J, Lee N. Sci. Rep., 2015, 5: 12705.
[5] Lai S, Barbaro M, Bonfiglio A. Sens. Actuators B-Chem., 2016, 233: 314.
[6] Jeon P J, Lee K, Park E Y, Im S, Bae H. Org. Electron., 2016, 32: 208.
[7] 柴玉华(Chai Y H), 郭玉秀(Guo Y X), 卞伟(Bian W),李雯(Li W), 杨涛(Yang T), 仪明东(Yi M D), 范曲立(Fan Q L), 解令海(Xie L H), 黄维(Huang W). 物理学报(Acta Physica Sinica), 2014, 63(2): 263.
[8] Fiore V, Battiato P, Abdinia S, Jacobs S, Chartier I, Coppard R, Klink G, Cantatore E, Ragonese E, Palmisano G. IEEE Trans. Circuits Syst. I, 2015, 62(6): 1668.
[9] Noh J, Jung M, Jung Y, Yeom C, Pyo M, Cho G. Proc. IEEE, 2015, 103(4): 554.
[10] 宋静怡(Song J Y), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P). 化学进展(Progress in Chemistry), 2013,(1): 12.
[11] Li Y, Sun H, Shi Y, Tsukagoshi K. Sci. Technol. Adv. Mater., 2014, 15(2): 24203.
[12] Diao Y, Tee B C, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z. Nat. Mater., 2013, 12(7): 665.
[13] Li H, Tee B C, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z. J. Am. Chem. Soc., 2012, 134(5): 2760.
[14] Yun H, Kang S, Xu Y, Kim S O, Kim Y, Noh Y, Kwon S. Adv. Mater., 2014, 26(43): 7300.
[15] Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett., 2014, 14(5): 2764.
[16] Sun H, Wang Q, Qian J, Yin Y, Shi Y, Li Y. Semicond. Sci. Technol., 2015, 30(5): 54001.
[17] Kudo K, Yamashina M, Moriizumi T. Jpn. J. Appl. Phys., 1984, 23(1): 130.
[18] Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev., 2012, 112(4): 2208.
[19] Dong H, Fu X, Liu J, Wang Z, Hu W. Adv. Mater., 2013, 25(43): 6158.
[20] Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z. Nature, 2011, 480(7378): 504.
[21] Sakamoto K, Bulgarevich K, Miki K. Jpn. J. Appl. Phys., 2014, 53(2): 1B.
[22] Giri G, Park S, Vosgueritchian M, Shulaker M M, Bao Z. Adv. Mater., 2014, 26(3): 487.
[23] Zhao H, Li D, Dong G, Duan L, Liu X, Wang L. Langmuir, 2014, 30(40): 12082.
[24] Zhao H, Wang Z, Dong G, Duan L. Phys. Chem. Chem. Phys., 2015, 17(9): 6274.
[25] Xue G, Fan C, Wu J, Liu S, Liu Y, Chen H, Xin H L, Li H. Mater. Horiz., 2015, 2(3): 344.
[26] Nam S, Jang J, Anthony J E, Park J, Park C E, Kim K. ACS Appl. Mater. Interfaces, 2013, 5(6): 2146.
[27] Kim K, Jang M, Lee M, An T K, Anthony J E, Kim S H, Yang H, Park C E. J. Mater. Chem. C, 2016, 4(29): 6996.
[28] Lee S, Jang M, Yang H. ACS Appl. Mater. Interfaces, 2014, 6(22): 20444.
[29] Diemer P J, Lyle C R, Mei Y, Sutton C, Payne M M, Anthony J E, Coropceanu V, Brédas J, Jurchescu O D. Adv. Mater., 2013, 25(48): 6956.
[30] Pitsalidis C, Pappa A, Hunter S, Payne M M, Anthony J E, Anthopoulos T D, Logothetidis S. ACS Appl. Mater. Interfaces, 2015, 7(12): 6496.
[31] Zhao K, Wodo O, Ren D, Khan H U, Niazi M R, Hu H, Abdelsamie M, Li R, Li E Q, Yu L, Yan B, Payne M M, Smith J, Anthony J E, Anthopoulos T D, Thoroddsen S T, Ganapathysubramanian B, Amassian A. Adv. Funct. Mater., 2016, 26(11): 1737.
[32] Hallani R K, Thorley K J, Mei Y, Parkin S R, Jurchescu O D, Anthony J E. Adv. Funct. Mater., 2016, 26(14): 2341.
[33] Mei Y, Loth M A, Payne M, Zhang W, Smith J, Day C S, Parkin S R, Heeney M, Mcculloch I, Anthopoulos T D, Anthony J E, Jurchescu O D. Adv. Mater., 2013, 25(31): 4352.
[34] Leenen M A M, Cucinotta F, Viani L, Mavrinskiy A, Pisula W, Gierschner J, Cornil J, Prodi-Schwab A, Thiem H, Müllen K, De Cola L. J. Phys. Chem. B, 2010, 114(45): 14614.
[35] Wang B, Ding J, Zhu T, Huang W, Cui Z, Chen J, Huang L, Chi L. Nanoscale, 2016, 8(7): 3954.
[36] Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res., 2014, 47(5): 1493.
[37] Ma Z, Geng H, Wang D, Shuai Z. J. Mater. Chem. C, 2016, 4(20): 4546.
[38] Mei J, Diao Y, Appleton A L, Fang L, Bao Z. J. Am. Chem. Soc., 2013, 135(18): 6724.
[39] Takimiya K, Yamamoto T, Ebata H, Izawa T. Thin Solid Films, 2014, 554: 13.
[40] Ruzié C, Karpinska J, Laurent A, Sanguinet L, Hunter S, Anthopoulos T D, Lemaur V, Cornil J, Kennedy A R, Fenwick O, Samorì P, Schweicher G, Chattopadhyay B, Geerts Y H. J. Mater. Chem. C, 2016, 4(22): 4863.
[41] Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J. Appl. Phys. Express, 2009, 2(11): 111501.
[42] Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li W, Kang M J, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J. Adv. Mater., 2011, 23(14): 1626.
[43] Hofmockel R, Zschieschang U, Kraft U, Rödel R, Hansen N H, Stolte M, Würthner F, Takimiya K, Kern K, Pflaum J, Klauk H. Org. Electron., 2013, 14(12): 3213.
[44] Wang Y, Chen L, Wang Q, Sun H, Wang X, Hu Z, Li Y, Shi Y. Org. Electron., 2014, 15(10): 2234.
[45] Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475(7356): 364.
[46] Iino H, Usui T, Hanna J. Nat. Commun., 2015, 6: 6828.
[47] Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J. Adv. Mater., 2013, 25(44): 6392.
[48] Mitsui C, Okamoto T, Yamagishi M, Tsurumi J, Yoshimoto K, Nakahara K, Soeda J, Hirose Y, Sato H, Yamano A, Uemura T, Takeya J. Adv. Mater., 2014, 26(26): 4546.
[49] Zhao Y, Guo Y, Liu Y. Adv. Mater., 2013, 25(38): 5372.
[50] Zhou K, Dong H, Zhang H, Hu W. Phys. Chem. Chem. Phys., 2014, 16(41): 22448.
[51] Kim J, Khim D, Kang R, Lee S, Baeg K, Kang M, Noh Y, Kim D. ACS Appl. Mater. Interfaces, 2014, 6(11): 8108.
[52] Kim K, Jeong H J, Kim F S. Polym. Bull., 2016, 73(9): 2493.
[53] Wang C, Lee W, Kong D, Pfattner R, Schweicher G, Nakajima R, Lu C, Mei J, Lee T H, Wu H, Lopez J, Diao Y, Gu X, Himmelberger S, Niu W, Matthews J R, He M, Salleo A, Nishi Y, Bao Z. Sci. Rep., 2015, 5: 17849.
[54] Horii Y, Sakaguchi K, Chikamatsu M, Azumi R, Yase K, Kitagawa M, Konishi H. Appl. Phys. Express, 2010, 3(10): 101601.
[55] Long D X, Karakawa M, Noh Y. Phys. Chem. Chem. Phys., 2016, 18(34): 23904.
[56] Yu H, Cho H, Cho C, Kim K, Kim D Y, Kim B J, Oh J H. ACS Appl. Mater. Interfaces, 2013, 5(11): 4865.
[57] Wang Y, Tsai M, Wang P, Lin C, Cheng H, Tang F, Lien-Chung Hsu S, Hsu C, Chou W. RSC Adv., 2016, 6(81): 77735.
[58] Mamada M, Pérez-Bolívar C, Kumaki D, Esipenko N A, Tokito S, Anzenbacher P. Chem.-Eur. J., 2014, 20(37): 11835.
[59] Baeg K, Khim D, Kim J, Kang M, You I, Kim D, Noh Y. Org. Electron., 2011, 12(4): 634.
[60] Ferlauto L, Liscio F, Orgiu E, Masciocchi N, Guagliardi A, Biscarini F, Samorì P, Milita S. Adv. Funct. Mater., 2014, 24(35): 5503.
[61] Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J. Adv. Mater., 2011, 23(32): 3681.
[62] Stolte M, Gsanger M, Hofmockel R, Suraru S L, Wurthner F. Phys. Chem. Chem. Phys., 2012, 14(41): 14181.
[63] Zhang F, Hu Y, Schuettfort T, Di C, Gao X, Mcneill C R, Thomsen L, Mannsfeld S C B, Yuan W, Sirringhaus H, Zhu D. J. Am. Chem. Soc., 2013, 135(6): 2338.
[64] Zhao G, Gu P, Dong H, Jiang W, Wang Z, Hu W. Adv. Electron. Mater., 2016, 2(5): 1500430.
[65] Mamada M, Shima H, Yoneda Y, Shimano T, Yamada N, Kakita K, Machida T, Tanaka Y, Aotsuka S, Kumaki D, Tokito S. Chem. Mater., 2015, 27(1): 141.
[66] Wu Q, Li R, Hong W, Li H, Gao X, Zhu D. Chem. Mater., 2011, 23(13): 3138.
[67] Xu X, Yao Y, Shan B, Gu X, Liu D, Liu J, Xu J, Zhao N, Hu W, Miao Q. Adv. Mater., 2016, 28(26): 5276.
[68] Liu K, Song C, Zhou Y, Zhou X, Pan X, Cao L, Zhang C, Liu Y, Gong X, Zhang H. J. Mater. Chem. C, 2015, 3(16): 4188.
[69] Zeng W, Zhou X, Pan X, Song C, Zhang H. AIP Adv., 2013, 3(1): 12101.
[70] Li M, An C, Pisula W, Müllen K. Small, 2014, 10(10): 1926.
[71] Hu J, Nakano M, Osaka I, Takimiya K. J. Mater. Chem. C, 2015, 3(17): 4244.
[72] Hunter B S, Ward J W, Payne M M, Anthony J E, Jurchescu O D, Anthopoulos T D. Appl. Phys. Lett., 2015, 106(22): 223304.
[73] Park K S, Baek J, Park Y, Lee L, Lee Y K, Kang Y, Sung M M. Adv. Mater., 2016, 28(15): 2874.
[74] Raghuwanshi V, Bharti D, Varun I, Mahato A K, Tiwari S P. Org. Electron., 2016, 34: 284.
[75] Rivnay J, Jimison L H, Northrup J E, Toney M F, Noriega R, Lu S, Marks T J, Facchetti A, Salleo A. Nat. Mater., 2009, 8(12): 952.
[76] Li H, Fan C, Vosgueritchian M, Tee B C K, Chen H. J. Mater. Chem. C, 2014, 2(18): 3617.
[77] Kim J, Cho S, Kang J, Kim Y, Park S K. ACS Appl. Mater. Interfaces, 2014, 6(10): 7133.
[78] Wu K, Wu T, Chang S, Hsu C, Wang C. Adv. Mater., 2015, 27(29): 4371.
[79] Liu S, Wu J, Fan C, Xue G, Chen H, Xin H L, Li H. Sci. Bull., 2015, 60(12): 1122.
[80] Kim K, Rho Y, Kim Y, Kim S H, Hahm S G, Park C E. Adv. Mater., 2016, 28(16): 3209.
[81] Wu K, Li H, Li L, Zhang S, Chen X, Xu Z, Zhang X, Hu W, Chi L, Gao X, Meng Y. Langmuir, 2016, 32(25): 6246.
[82] Ceratti D R, Louis B, Paquez X, Faustini M, Grosso D. Adv. Mater., 2015, 27(34): 4958.
[83] James D T, Frost J M, Wade J, Nelson J, Kim J. ACS Nano, 2013, 7(9): 7983.
[84] Tang C, Wu W, Smilgies D, Matyjaszewski K, Kowalewski T. J. Am. Chem. Soc., 2011, 133(30): 11802.
[85] Tszydel I, Kucinska M, Marszalek T, Rybakiewicz R, Nosal A, Jung J, Gazicki-Lipman M, Pitsalidis C, Gravalidis C, Logothetidis S, Zagorska M, Ulanski J. Adv. Funct. Mater., 2012, 22(18): 3840.
[86] 姚奕帆(Yao Y F), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P). 科学通报(Chinese Science Bulletin), 2013, 58(18): 1683.
[87] Niazi M R, Li R, Qiang Li E, Kirmani A R, Abdelsamie M, Wang Q, Pan W, Payne M M, Anthony J E, Smilgies D, Thoroddsen S T, Giannelis E P, Amassian A. Nat. Commun., 2015, 6: 8598.
[88] Pitsalidis C, Kalfagiannis N, Hastas N A, Karagiannidis P G, Kapnopoulos C, Ioakeimidis A, Logothetidis S. RSC Adv., 2014, 4(40): 20804.
[89] Khim D, Han H, Baeg K, Kim J, Kwak S, Kim D, Noh Y. Adv. Mater., 2013, 25(31): 4302.
[90] Chang J, Chi C, Zhang J, Wu J. Adv. Mater., 2013, 25(44): 6442.
[91] Park S, Giri G, Shaw L, Pitner G, Ha J, Koo J H, Gu X, Park J, Lee T H, Nam J H, Hong Y, Bao Z. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(18): 5561.
[92] Xu J, Wang Y, Shan H, Lin Y, Chen Q, Roy V A L, Xu Z. ACS Appl. Mater. Interfaces, 2016, 8(29): 18991.
[93] Soeda J, Uemura T, Okamoto T, Mitsui C, Yamagishi M, Takeya J. Appl. Phys. Express, 2013, 6(7): 76503.
[94] Del Pozo F G, Fabiano S, Pfattner R, Georgakopoulos S, Galindo S, Liu X, Braun S, Fahlman M, Veciana J, Rovira C, Crispin X, Berggren M, Mas-Torrent M. Adv. Funct. Mater., 2016, 26(14): 2379.
[95] Noda Y, Minemawari H, Matsui H, Yamada T, Arai S, Kajiya T, Doi M, Hasegawa T. Adv. Funct. Mater., 2015, 25(26): 4022.
[96] Lim J, Lee W, Kwak D, Cho K. Langmuir, 2009, 25(9): 5404.
[97] Kjellander B K C, Smaal W T T, Anthony J E, Gelinck G H. Adv. Mater., 2010, 22(41): 4612.
[98] Komino T, Kuwabara H, Ikeda M, Yahiro M, Takimiya K, Adachi C. Langmuir, 2013, 29(30): 9592.
[99] Castro H F, Sowade E, Rocha J G, Alpuim P, Lanceros M S, Baumann R R. J. Electron. Mater., 2014, 43(7): 2631.
[100] Shao M, Das S, Xiao K, Chen J, Keum J K, Ivanov I N, Gu G, Durant W, Li D, Geohegan D B. J. Mater. Chem. C, 2013, 1(28): 4384.
[101] Onojima N, Takahashi S, Saito H. Org. Electron., 2015, 24: 165.
[102] Checcoli P, Conte G, Salvatori S, Paolesse R, Bolognesi A, Berliocchi M, Brunetti F, D’Amico A, Di Carlo A, Lugli P. Synth. Met., 2003, 138: 261.
[103] Azarova N A, Owen J W, Mclellan C A, Grimminger M A, Chapman E K, Anthony J E, Jurchescu O D. Org. Electron., 2010, 11(12): 1960.
[104] Khim D, Baeg K, Yu B, Kang S, Kang M, Chen Z, Facchetti A, Kim D, Noh Y. J. Mater. Chem. C, 2013, 1(7): 1500.
[105] Park H, Yang H, Choi S, Jang S. ACS Appl. Mater. Interfaces, 2012, 4(1): 214.
[106] Pitsalidis C, Pappa A M, Hunter S, Laskarakis A, Kaimakamis T, Payne M M, Anthony J E, Anthopoulos T D,Logothetidis S. J. Mater. Chem. C, 2016, 4(16): 3499.
[107] 张凤娇(Zhang F J), 狄重安(Di Z A). 化学通报(Chemistry Bulletin), 2013, 76(1): 15.
[108] Weidkamp K P, Afzali A, Tromp R M, Hamers R J. J. Am. Chem. Soc., 2004, 126(40): 12740.
[109] Khim D, Baeg K, Kim J, Kang M, Lee S, Chen Z, Fachetti A, Kim D, Noh Y. ACS Appl. Mater. Interfaces, 2013, 5(21): 10745.
[1] Ning Zhang, Ying Li. Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications [J]. Progress in Chemistry, 2017, 29(4): 373-387.
[2] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[3] Cai Xiaozhou, Jiang Lang, Dong Huanli, Li Jingze*, Hu Wenping* . Organic Circuits and Their Basic Elements [J]. Progress in Chemistry, 2012, 24(12): 2431-2442.