中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 241-251 DOI: 10.7536/PC161023 Previous Articles   Next Articles

• Review •

Preparation of Graphite Phase C3N4 and Bismuth Based Composite Photocatalyst and Its Environmental Application

Pengyuan Wang1,2, Changsheng Guo2*, Jianfeng Gao1, Jian Xu2   

  1. 1. School of Science, North University of China, Taiyuan 030051, China;
    2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • Received: Revised: Online: Published:
PDF ( 672 ) Cited
Export

EndNote

Ris

BibTeX

Semiconductor photocatalytic technology has been proved as an effective way to solve the problems of both environmental pollution and energy shortage. It can be applied for the degradation, transformation and mineralization of pollutants in the environment, and for the conversion of solar energy as well. Graphite phase carbon nitride (g-C3N4) and bismuth based composite materials have become the hot research topic because of their excellent photocatalytic performance. This paper reviews the preparation methods of g-C3N4 and its composites with different bismuth compounds. We also reviews the recent advances of the application of g-C3N4 and Bi composites in the environmental purification, including the elimination of pollutants in water, the light induced bacterial inactivation, and the photoinduced hydrolysis for hydrogen production. Taking the elimination of organic contaminants in water as an example, this paper elaborate detailedly their mechanisms of photocatalytic degradation. Finally, we prospect the new development and application potential of the g-C3N4 and Bi based composite photocatalytic materials in the environmental field.

Contents
1 Introduction
2 Synthesis of g-C3N4
2.1 Thermal polymerization method
2.2 Solvothermal synthesis
2.3 Electrochemical deposition
2.4 Solid phase synthesis
3 Preparation of g-C3N4 and bismuth based composites
3.1 Preparation of g-C3N4/Bi based halide oxides composites
3.2 Preparation of g-C3N4 and bismuth metal salts composites
3.3 Preparation of g-C3N4 and other bismuth compounds
4 Application of composites in the environment
4.1 Removal of organic pollutants in water environment
4.2 Photocatalytic hydrogen production by water splitting
4.3 Application of composite materials in other areas
5 Reaction mechanisms
6 Conclusion

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[3] Liu W, Wang M, Xu C, Chen S, Fu X. J. Mol. Catal., 2013, s368/369:9.
[4] Xin G, Meng Y. J. Chem., 2013, 2013.
[5] Zhou X, Jin B, Chen R, Peng F, Fang Y. Mater. Res. Bull., 2013, 48:1447.
[6] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem. 2012, 22:2721.
[7] Chen C C, Ma W H, Sun C Y, Zhao J C. Sci. China, 2012, 55:2532.
[8] Zhang Y, Antonietti Dr. M. Chem. Asi. J., 2010, 5:1307.
[9] Wang C, Zhu W, Xu Y, Xu H, Zhang M, Chao Y, Yin S, Li H, Wang J. Ceram. Int., 2014, 40:11627.
[10] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B, 2013, 129:182.
[11] Xiu Z, Bo H, Wu Y, Hao X. Appl. Surf. Sci., 2014, 289:394.
[12] Xu J, Meng W, Zhang Y, Li L, Guo C S. Appl. Catal. B, 2011, 107:355.
[13] GuoC S, Xu J, Wang S F, Li L, Zhang Y, Li X C. CrystEngComm, 2012, 14:3602.
[14] Xu J, Li L, Guo C S, Zhang Y, Meng W. Appl. Catal. B, 2013, 130/131:285.
[15] Guo C S, Xu J, Wang S F, Zhang Y, He Y, Li X C. Catal. Sci. Technol., 2013, 3:1603.
[16] Xu J, Li L, Guo C S, Zhang Y, Wang S F. Chem. Eng. J., 2013, 221:230.
[17] Gao S W, Guo C S, Lv J P, Wang Q, Zhang Y, Hou S, Gao J F. Chem. Eng. J., 2017, 307:1055.
[18] 李二军(Li E J), 陈浪(Chen L),章强(Zhang Q),李文华(Li W H),尹双凤(Yin S F).化学进展(Prog. Chem.), 2010, 22:2282.
[19] Liebig J V. Ann. Pharm., 1834, 10:10.
[20] Cohen M L. Physical Review B.1985, 32:7988
[21] Liu A Y, Cohen M L. Science, 1989, 245:841.
[22] Teter D M, Hemley R J. Science, 1996, 271:53.
[23] Miller D R, Wang J, Gillan E G. J. Mater. Chem., 2002, 12:2463.
[24] Li X H, Chen J S, Wang X, Sun J, Antonietti M. J. Am. Chem. Soc., 2011, 133:8074.
[25] Niu P, Zhang L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22:4763.
[26] Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L. Angew. Chem.Int.Ed., 2014, 53:13934.
[27] Martin D J, Qiu K, Shevlin S A, Handoko A D, Chen X, Guo Z, Tang J. Angew. Chem. Int. Ed., 2014, 53:9240.
[28] Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H. Small, 2013, 9:3336.
[29] Chen X, Zhang J, Fu X, Antonietti M, Wang X. J. Am. Chem. Soc., 2009, 131, 11658.
[30] Dong G, Zhang L. J. Mater. Chem., 2012, 22:1160.
[31] Long B, Lin J, Wang X. J.Mater.Chem.A, 2014, 2:2942.
[32] Zhang G, Zhang J, Zhang M, Wang X. J.Mater.Chem., 2012, 22:8083.
[33] Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee S C. J. Mater. Chem., 2011, 21:15171.
[34] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J. Mater. Chem., 2011, 21:14398.
[35] Tyborski T, Merschjann C, Orthmann S, Yang F, Lux-Steiner M C, Schedel-Niedrig T. J. Phys.:Condens. Matter., 2012, 24:543.
[36] Fu Q, Cao C B, Zhu H S. Chem. Phys. Lett., 1999, 314:223.
[37] Lv Q, Cao C, Li C, Zhang J, Zhu H, Kong X, Duan X. J. Mater. Chem., 2003, 13:1241.
[38] Luv Q, Cao C B, Zhang J T, Li C, Zhu H S. Appl. Phys. A, 2004, 79:633.
[39] Montigaud H, Tanguy B, Demazeau G, Alves I, Birot M, Dunogues J. Diamond Relat. Mater., 1999, 8:1707.
[40] Bai Y J, Bo L, Liu Z G, Ling L, Cui D L, Xu X G, Wang Q L. Journal of Crystal Growth., 2003, 247:505.
[41] Guo Q, Xie Y, Wang X, Zhang S, Hou T, Lv S. Chem. Commun., 2004, 10:26.
[42] Li J, Cao C, Zhu H. Nanotechnology, 2007, 18:4473.
[43] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51:11814.
[44] Bai X, Li J, Cao C, Hussain S. Mater. Lett., 2011, 65:1101.
[45] Fu Q, Cao C B, Zhu H S. Journal of Mater. Sci. Lett., 1999, 18:1485.
[46] Li C, Cao C, Zhu H. Chin. Sci. Bull., 2003, 48:1737.
[47] Bai X J, Jie L B, Cao C B. Appl. Surf. Sci., 2010, 256:2327.
[48] Fu Q, Jiu J T, Cai K, Wang H, Cao C B, Zhu H S. Phys. Rev. B, 1999, 59:1693.
[49] Knabashesku V, Zimmerman J, Margrave J. Chem. Mater., 2000, 12:3264.
[50] Zimmerman J L, Williams R, Khabashesku V, Margrave J. Nano Lett., 2001, 1:731.
[51] Zhang Z, Leinenweber K, Bauer M, Garvie L A, Mcmillan P F, Wolf G H. J. Am. Chem. Soc., 2001, 123:7788.
[52] Komatsu T. J. Mater. Chem., 2001, 11:802.
[53] Tragl S, Gibson K, Glaser J, Duppel V, Simon A, Meyer H J. Solid State Commun., 2007, 141:529.
[54] Li Y, Zhang J, Wang Q, Jin Y, Huang D, Cui Q, Zou G. Appl. Catal. B, 2010, 114:9429.
[55] Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H. J. Mater. Chem. A, 2014, 2:5340.
[56] Ye L, Liu J, Jiang Z, Peng T, Zan L, Appl. Catal. B, 2013, 142/143:1.
[57] Chang C, Zhu L, Wang S, Chu X, Yue L. ACS Appl. Mat. Interfaces, 2014, 6:5083.
[58] Lei L, Jin H, Zhang Q, Xu J, Gao D, Fu Z. Dalton Trans., 2015, 44:795.
[59] Wang Y, Bai X, Pan C, He J, Zhu Y. J. Mater. Chem., 2012, 22:11568.
[60] 桂明生(Gui M S), 王鹏飞(Wang P F), 袁东(Yuan D), 杨易坤(Yang Y D). 无机化学学报(Chin. J. Inorg. Chem.), 2013, 29:2057.
[61] Ji Y, Cao J, Jiang L, Zhang Y, Yi Z. J. Alloys Compd., 2014, 590:9.
[62] Ou M, Zhong Q, Zhang S, Yu L. J. Alloys Compd., 2015, 626:401.
[63] Zhao C, Tan G, Jing H, Wei Y, Ren H, Ao X. ACS Appl. Mat. Interfaces., 2015, 43:23949
[64] Li H, Liu J, Hou W, Du N, Zhang R, Tao X. Appl. Catal., B., 2014, 160/161:89.
[65] Yan T, Yan Q, Wang X, Liu H, Li M, Lu S, Xu W, Sun M. Dalton Trans., 2015, 44:1601.
[66] Chen W, Duan G R, Liu T Y, Chen S M, Liu X H. Mater. Sci. in Semicond. Process., 2015, 35:45.
[67] Li Z, Yang S, Zhou J, Li D, Zhou X, Ge C, Fang Y. Chem. Eng. J., 2014, 241:344.
[68] Zou X, Dong Y, Li X, Zhao Q, Cui Y, Lu G. Catal. Commun., 2015, 69:109.
[69] Tang J, Zhao H, Li G, Lu Z, Xiao S, Chen R. Ind. Eng. Chem. Res., 2013, 52:12604.
[70] Zhang W, Sun Y, Dong F, Zhang W, Duan S, Zhang Q. Dalton Trans., 2014, 43:12026.
[71] Tian N, Zhang Y, Huang H, Guo Y, He Y. Appl. Surf. Sci., 2014, 322:249.
[72] Zhang J, Hu Y, Jiang X, Chen S, Meng S, Fu X. J. Hazard. Mater., 2014, 280:713.
[73] Rong X, Qiu F, Yan J, Zhao H, Zhu X, Yang D. RSC Adv., 2015, 5:24944.
[74] Xu J, Xu Yan, Wang H M, Guo C S, Qiu H Y, He Y, Zhang Y, Li X C, Meng W. Chemosphere, 2015, 119:1379.
[75] 李若愚(Li R Y), 徐斌(Xu B), 高乃云(Gao N Y), 芮旻(Rui Y), 乐林生(Le L S), 吴今明(Wu J M). 中国给水排水(Chin. Water Wastewater), 2006, 22:1.
[76] 丁剑(Ding J), 张剑波(Zhang J B). 环境保护(Environ. Protec.), 2004, 12:54.
[77] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25:10397.
[78] Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J. Chem. Eng. J., 2014, 249:102.
[79] Wang C, Zhu L, Wei M, Chen P, Shan G. Water Res., 2012, 46:845.
[80] 毛茂乔(Mao M Q), 单国强(Shan G Q), 夏佳慧(Xia J H), 杜伟(Du W), 王彤旭(Wang T X), 董思宇(Dong S Y), 祝凌燕(Zhu L Y). 科学通报(Chin Sci Bull), 2014, 59:3072.
[81] Xia J, Di J, Yin S, Li H, Xu H, Xu L, Shu H, He M. Mater. Sci. in Semicond. Process., 2014, 24:96.
[82] Shan W, Hu Y, Bai Z, Zheng M, Wei C. Appl. Catal. B, 2016, 188:1.
[83] Yue L, Wang S, Shan G, Wei W, Qiang L, Zhu L. Appl. Catal. B, 2015, s176/177, 11.
[84] Hernández-Uresti D B, Vázquez A, Sanchez-Martinez D, Obregón S. J. Photochem. Photobiol.A., 2016, 324:47.
[85] Li J, Zhou M, Ye Z, Wang H, Ma C, Huo P, Yan Y. RSC Adv, 2015, 5:91177.
[86] Huang K, Liu C, Yan X, Hong Y, Chen J, Huang C, Chen M, Shi W. CrystEngComm, 2016, 18.
[87] Wu M, Yan J M, Zhang X W, Zhao M. Appl. Surf. Sci., 2015, 354:196.
[88] Yan J, Wu H, Chen H, Pang L, Zhang Y, Jiang R, Li L, Liu S. Appl. Catal. B, 2016, 194:74.
[89] Chen T, Quan W, Yu L, Hong Y, Song C, Fan M, Xiao L, Gu W, Shi W. J. Alloys Compd., 2016, 686:628.
[90] Zeng Y, Wang Y, Chen J, Jiang Y, Kiani M, Li B, Wang R. Ceram. Int., 2016, 42:12297.
[91] Ho W, Zhang Z, Xu M, Zhang X, Wang X, Yu H. Appl. Catal. B, 2015, 179:106.
[92] Wang Z, Huang Y, Ho W, Cao J, Shen Z, Lee S C. Appl. Catal. B, 2016, 199:123.
[93] Rincón A G, Pulgarin C. Appl. Catal. B, 2003, 44:263.
[94] Yu J C, Ho W, Lin J, Yip H, Wong P K. Environ. Sci. Technol., 2003, 37:2296.
[95] Gan H, Zhang G, Huang H. J. Hazard Mater., 2013, 250/251:131.
[96] Wang H, Lu J, Wang F, Wei W, Chang Y, Dong S. Ceram. Int., 2014, 40:9077.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[8] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[9] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[10] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[15] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.