中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 293-299 DOI: 10.7536/PC161020 Previous Articles   Next Articles

• Review •

Recent Advances in C-H Azidation Catalyzed by Metals

Yandong Dou, Shasha Ying, Chenqing Zhang, Liyang Yu, Ken Zheng, Qing Zhu*   

  1. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
PDF ( 1402 ) Cited
Export

EndNote

Ris

BibTeX

Azide compounds have displayed wide applications in biological chemistry and pharmaceutical chemistry. However, the classic methods to prepare these compounds usually involve long synthesis steps, harsh reaction conditions and low reaction yields. Recent chemical approaches for direct azidation via C-H activation have drawn more attention due to its high efficiency, high conversion rate and good selectivity. This review intends to explore advances for direct azidation via C-H functionalization in the last five years and discuss the proposed mechanisms. These results are applicable to the development of synthetic methodology, natural product synthesis, and protein research.

Contents
1 Introduction
2 Azidation via metal C-H activation
2.1 Guide group-based catalysts
2.2 Free radical reaction
3 Conclusion"

CLC Number: 

[1] a) Keana J F W, Cai S X. J. Org. Chem., 1990, 55:3640.; b) Chehade K A H, Spielmann H P. J. Org. Chem., 2000, 65:4949.; c) Ritchie C D, Wright D J. J. Am. Chem. Soc., 1971, 93:2429.; d) Ritchie C D, Virtanen P O I. J. Am. Chem. Soc., 1972, (94):4966.; e) Avemaria F, Zimmermann V, Brase S. Synlett., 2004, 11:63.
[2] a) Abegg D, Frei R, Cerato L. Angew. Chem. Int. Ed., 2015, 54:10852.; b) Shi H, Zhang C J, Yao S Q. J. Am. Chem. Soc., 2012, 134:3001.
[3] a) Park C M, Niu W, Xian M. Org. Lett., 2012, 14:4694.;b) Soellner M B, Dickson K A, Raines R T. J. Am. Chem. Soc., 2003, 125:11790.; c) Liang H W, Jiang K, Ding W, Yuan Y, Shuai L, Chen Y C, Wei Y. Chem. Commun., 2015, 51:16928.; d) Xu J, Zhu X, Zhou G, Ying B, Ye P, Su L, Shen C, Zhang P. Org. Biomol. Chem., 2016, 14:3016.
[4] Shen M, Driver T G. Org. Lett., 2008, 10:3367.
[5] a) Hammers M D, Taormina M J, Cerda M M. J. Am. Chem. Soc., 2015, 137:10216.; b) Henthorn H A, Pluth M D. J. Am. Chem. Soc., 2015, 137:15330.; c) Du J, Xu G, Lin H K. Green Chem., 2016, 18:2726.
[6] Zhou S, Liao H, Liu M, Feng G. Bioorganic & Medicinal Chemistry, 2014, 22:6438.
[7] Shi H, Zhang C J, Chen G Y J, Yao S Q. J. Am. Chem. Soc., 2012, 134:3001.
[8] Borden W T, Gritsan N P, Hadad C M, Karney W L, Kemnitz R, Platz M S. Acc. Chem. Res., 2000, 33:765.
[9] Preston G W, Wilson A J. Chem. Soc. Rev., 2013, 42:3289.
[10] Li G, Liu Y, Yu X, Li X. Bioconjugate Chem., 2014, 25:1172.
[11] a) Hammers M D, Taormina M J, Cerda M M. J. Am. Chem. Soc., 2015, 137:10216.; b) Henthorn H A, Pluth M D. J. Am. Chem. Soc., 2015, 137:15330.
[12] Ke B, Wu W, Liu W, Li M. Anal. Chem., 2016, 88:592.
[13] a) Zhang C P, Vicic D A. J. Am. Chem. Soc., 2012, 134:183.; b) Reddick J J, Cheng J, Roush W R. Org. Lett., 2003, 5:1967.
[14] Griess P. Philos. Trans. R. Soc. London, 1864, 13:377.
[15] a) Keana J F W, Cai S X. J. Org. Chem., 1990, 55:3640.; b) Chehade K A H, Spielmann H P. J. Org. Chem., 2000, 65:4949.
[16] a) Ritchie C D, Wright D J. J. Am. Chem. Soc., 1971, 93:2429.; b) Ritchie C D, Virtanen P O I. J. Am. Chem. Soc., 1972, 94:4966.; c) Avemaria F V, Zimmerman B S. Synlett, 2004, 11:63.
[17] a) Zhu W, Ma D. Chem. Commun., 2004, 8:88.; b) Tao C Z, Cui X, Li J, Liu A X, Liu L, Guo Q X. Tetrahedron Lett., 2007, 48:3525.
[18] a) Du B, Jiang X Q. J. Org. Chem., 2013, 78:2786.; b) Cullen S C, Shekhar S, Nere N K. J. Org. Chem., 2013, 78:12194.; c) Chu L L, Yue X Y, Qing F L. Org. Lett., 2010, 12:1644.
[19] a) Tang C, Jiao N. J. Am. Chem. Soc., 2012, 134:18924.; b) Du B N, Jiang X Q, Sun P P. J. Org. Chem., 2013, 78:2786.; c) Wang Z, Kuninobu Y.Org. Lett., 2014, 16:4790.
[20] Tang C, Jiao N. J. Am. Chem. Soc., 2012, 134:18924.
[21] Fan Y, Wan W, Ma G B, Gao W, Hao J. Chem. Commun., 2014, 50:5733.
[22] Azad C S, Narula A K. RSC Adv., 2015, 5:100223.
[23] Dou Y D, Xie Z D, Sun Z G, Fang H L, Shen C, Zhang P F, Zhu Q. ChenCatChem, 2016, 8(23):3570.
[24] Xie F, Qi Z, Li X. Angew. Chem. Int. Ed., 2013, 52:11862.
[25] McHargue J S. Ind. Eng. Chem., 1926, 18:172.
[26] Huang X Y, Bergsten T M, Groves J T. J. Am. Chem. Soc., 2015, 137:5300.
[27] Sun X, Li X Y, Song S, Zhu Y C, Liang Y F, Jiao N. J. Am. Chem. Soc., 2015, 137:6059.
[28] Zhao Y, Hu Y C, Wang H L. J. Org. Chem., 2016, 81:4412.
[29] Sharma A, Hartwig J F. Nature, 2015, 29:600.
[30] Rabet P T G, Fumagalli G, Boyd S. Org. Lett., 2016, 18:1646.
[31] Rueping M, Vila C, Uria U. Org. Lett., 2012, 14:768.
[32] Liu C, Wang X Q, Li Z D. J. Am. Chem. Soc., 2015, 137:9820.
[33] Reddy Y S, Pal A P J, Ansari P G A. J. Org. Chem., 2011, 76:5972.
[34] Zhang X, Yang H D, Tang P. Org. Lett., 2015, 17:5828.
[35] Li P, Zhao J J, Xia C G. Org. Chem. Front., 2015, 2:1313.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[4] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[5] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[6] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[7] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[8] Yandong Dou, Xiaoxu Gu, Jianze Jiang, Qing Zhu. Group-Directed C—H Functionalization [J]. Progress in Chemistry, 2018, 30(9): 1317-1329.
[9] Qiu Jianhao, He Ming, Jia Mingmin, Yao Jianfeng. Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications [J]. Progress in Chemistry, 2016, 28(7): 1016-1028.
[10] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[11] Gong Hao, Yang Yiwen, Kuang Chunxiang. Drug Synthesis via C—H Bond Functionalization [J]. Progress in Chemistry, 2014, 26(04): 592-608.
[12] Li Gaowei, Wang Xiaojuan, Zhao Wenxian, Lu Liujie, Liu Guanjun, Wang Mincan. Trost-Type Chiral Semi-Azacrown Ether Ligands in Asymmetric Catalysis [J]. Progress in Chemistry, 2012, 24(0203): 348-360.
[13] .  Catalysts Used in Addition Copolymerization of Ethylene and Norbornene [J]. Progress in Chemistry, 2010, 22(10): 2024-2032.
[14] Guo Guiquan Wu Limin Wang Changchun Fang Junfeng. Functionalization of Carbon Nanotubes through Free Radical Reaction [J]. Progress in Chemistry, 2009, 21(10): 2084-2092.
[15] . Theoretic Research on the Activation and Oxidation of Hydrocarbons [J]. Progress in Chemistry, 2009, 21(04): 577-587.