中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 435-442 DOI: 10.7536/PC161014 Previous Articles   Next Articles

• Review •

Directed Self-Assembly of Block Copolymers

Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*   

  1. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
PDF ( 2510 ) Cited
Export

EndNote

Ris

BibTeX

Block Copolymers (BCPs) have been investigated widely in recent years due to their ability of self-assembly in nanoscale and periodical patterns with feature sizes below 10 nm in thin films. Making use of the advantages of self-assembly of block copolymers in thin films, directed self-assembly (DSA) of block copolymers combines the "bottom to top" self-assembly of block copolymers in films and the "up to down" optical lithography or e-beam lithography technologies to prepare guide templates. Morphology diversity of nanostructures such as layer, columnar and holes can be obtained by molecular design of block copolymers. The pattern-wise introduction of chemical heterogeneity on the substrate surface allows the energetic of the polymer-surface interaction to be controlled in a spatially localized way that directs the alignment of block copolymer domains in films. Two main methods of self-assembly considered so far have been the grapho-epitaxy (topographic guiding patterns), which is based on creating pre-pattern on the surface of the template by lithography, and the chemical-epitaxy (chemical guiding patterns), which is based on the surface chemical modification of the template to direct the self-assembly process for instance by grafting a neutral layer material. Consequently, with higher resolution, denser and better ordered nano-patterns can be fabricated by tailoring, surface modification and size-control on micro phase and DSA is becoming one of the most promising advanced lithography technologies.

Contents
1 Introduction
2 Micro-phase separations of block copolymers (BCPs)
3 Directed self-assembly (DSA) of BCPs in thin films
3.1 Preparation of pre-templates
3.2 Control of template surface properties on self-assembly
3.3 DSA methods: grapho-epitaxy and chemcal-epitaxy
3.4 Other factors affecting the DSA morphology
3.5 Characterization and evaluation methods
4 Conclusion

CLC Number: 

[1] Kim H C, Park S M, Hinsberg W D. Chem. Rev., 2010, 110: 146.
[2] Goren M, Lennox R B. Nano Lett., 2001, 12: 735.
[3] Lu W, Lieber C M. Nature Materials, 2007, 6: 841.
[4] Boer B, Stalmach U, Nijland H, Hadziioannou G. Adv. Mater., 2000, 12: 1581.
[5] 黄永民(Huang Y M),韩霞(Han X),肖兴庆(Xiao X Q). 功能高分子学报(Journal of Functional Polymers), 2008, 2: 102.
[6] Archambault S, Girardot C, Salaün M, Delalande M, Böhme S, Cunge G, Pargon E, Joubert O, Zelsmann M. Proc. of SPIE, 2014, 9054: 90540O.
[7] Cheng J Y, Zhang F, Smith H I, Vancso G, Ross C A. Adv. Mater., 2006, 18: 597.
[8] Welander A M, Kang H M, Stuen K O, Solak H H, Nealey P F. Macromolecules, 2008, 41: 2759.
[9] Cheng J Y, Rettner C T, Sanders D P, Kim H C, Hinsberg W D. Adv. Mater., 2008, 20: 3155.
[10] Chevalier X, Tiron R, Upreti T, Gaugiran S, Navarro C, Magnet S, Chevolleau T, Cunge G, Fleury G. Proc. of SPIE, 2011, 7970: 79700Q.
[11] 杨荣巧(Yang Y Q). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2009
[12] Park S, Lee D H, Xu J, Kim B, Hong S W, Jeong U, Xu T, Russell T P. Science, 2009, 323: 1030.
[13] Sun Z W, Chen Z B, Zhang W X, Choi J, Huang C, Jeong G, Coughlin E B, Hsu Y, Yang X M, Lee K Y, Kuo D S, Xiao S G, Russell T P. Adv. Mater., 2015, 27: 4364.
[14] Sivaniah E, Matsubara S, Zhao Y, Hashimoto T, Fukunaga K, Kramer E J, Mates T E. Macromolecules, 2008, 41: 2584.
[15] Jung Y S, Jung W, Ross C A. Nano Lett., 2008, 8: 2975.
[16] Rodwogin M D, Spanjers C S, Leighton C, Hillmyer M A. ACS Nano, 2010, 4: 725.
[17] Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv. Mater., 2015, 27: 261.
[18] Cheng J Y, Sanders D P, Truong H D, Harrer S, Friz A, Holmes S, Colburn M, Hinsberg W D. ACS Nano, 2010, 4: 4815.
[19] Lawson R A, Ludovice P J, Henderson C L. Proc. of SPIE, 2011, 7970: 79700N.
[20] Solak H H, David C, Gobrecht J, Golovkina V, Cerrina F, Kim S O, Nealey P F. Microelectron. Eng., 2003, 67: 56.
[21] Oria L, Luzuriagab A R, Chevalierc X, Alduncinb J A, Mecerreyesb D, Tironc R, Gaugiranc S. Proc. of SPIE, 2011, 7970: 79700P.
[22] Son J G, Son M, Moon K J, Lee B H, Myoung J M, Strano M S, Ham M H, Ross C A. Adv. Mater., 2013, 25: 4723.
[23] Seokhan P, Je MoonY, Uday Narayan M, Hyoung-Seok M, Hyeong M J, Sang O K. Nanotechnology, 2014, 25: 014008.
[24] Cummins C, Gangnaik A, Kelly R A, Hydes A J, Connell J O, Petkov N, Georgiev Y M, Borah D, Holmes J D, Morris M A. Chem. Mater., 2015, 27: 6091.
[25] Baughman R H, Zakhidov A A, Heer W A. Science, 2002, 297: 787.
[26] Mansky P, Liu Y, Huang E, Russell T P, Hawker C. Science, 1997, 275: 1458.
[27] Peters R D, Yang X M, Kim T K, Sohn B H, Nealey P F. Langmuir, 2000, 16: 4625.
[28] Cui Y, Bjork M T, Liddle J A, Sonnichsen C, Boussert B, Alivisatos A P. Nano Letters, 2004, 4: 1093.
[29] Amundson K, Helfand E, Quan X N. Macromolecules, 1993, 26: 2698.
[30] Albrecht T T, Schotter J, Kastle G A, Emley N, Shibauchi T, Guarini K, Black C T, Tuominen M T, Russell T P. Science, 2000, 290: 2126.
[31] Keller A, Pedemonte E, Willmouth F M. Nature, 1970, 225: 538.
[32] Park S M, Stoykovich M P, Ruiz R, Zhang Y, Black C T, Nealey P F. Adv. Mater., 2007, 19: 607.
[33] Russell T P, Coulon G, Deline V R, Miller D C. Macromolecules, 1989, 22: 4600.
[34] Segalman R A, Yokoyama H, Kramer E J. Adv. Mater., 2001, 13: 1152.
[35] 魏玮(Wei W), 刘敬成(Liu J C), 李虎(Li H), 穆启道(Mu Q D), 刘晓亚(Liu X Y). 化学进展(Progress in Chemistry), 2014, 26(11): 1867.
[36] Jeong S J, Kim S O. J. Mater. Chem., 2011, 21: 5856.
[37] Liu C C, Han E, Onses M S, Thode C J, Ji S, Gopalan P, Nealey P F. Macromolecules, 2011, 44 : 1876.
[38] Khaira G S, Qin J, Garner G P, Xiong S, Wan L, Ruiz R, Jaeger H M, Nealey P F, de Pablo J J. ACS Macro Lett., 2014, 3: 747.
[39] Kim S, Nealey P F, Bates F S. Nano Lett., 2014, 14: 148.
[40] Williamson L D, Seidel R N, Chen X X, Suh H S, Delgadillo P S, Gronheid R, Nealey P F. ACS Appl. Mater. Iterfaces, 2016, 8: 2704.
[41] In I, La Y H, Park S M, Nealey P F, Gopalan P. Langmuir, 2006, 22: 7855.
[42] Ryu D Y, Wang J Y, Lavery K A, Drockenmuller E, Satija S K, Hawker C J, Russell T P. Macromolecules, 2007, 40: 4296.
[43] Song R Q, Hoheisel T N, Sai H, Li Z H, Carloni J D, Wang S T, Youngman R E, Baker S P, Gruner S M, Wiesner U, Estroff L A. Chem. Mater., 2016, 28: 838.
[44] Lee D E, Je N J, Yoo S I, Lee D H. Langmuir, 2015, 31: 12929.
[45] Borah D, Rasappa S, Salaun M, Zellsman M, Lorret O, Liontos G, Ntetsikas K, Avgeropoulos A, Morris M A. Adv. Funct. Mater., 2015, 25: 3425.
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[5] Qing Xiang, Yingwu Luo*. RAFT Emulsion Polymerization [J]. Progress in Chemistry, 2018, 30(1): 101-111.
[6] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[7] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[8] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[9] Wei Wei, Liu Jingcheng, Li Hu, Mu Qidao, Liu Xiaoya. Development and Application of Microelectronic Photoresist [J]. Progress in Chemistry, 2014, 26(11): 1867-1888.
[10] Yang Jiexin, Liu Lei, Xu Junting. Crystalline Micelles of Block Copolymers [J]. Progress in Chemistry, 2014, 26(11): 1811-1820.
[11] Wang Lulu, Huang Haiying, He Tianbai. Block Copolymer Nanotubular Aggregates Prepared via Direct Self-Assembly in Solution [J]. Progress in Chemistry, 2014, 26(05): 810-819.
[12] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[13] Duan Xiaoli, Fu Yan, Zhang Jinli, Li Wei. Chiral Assembled Materials and Their Application in Enantiomeric Resolution [J]. Progress in Chemistry, 2013, 25(08): 1272-1282.
[14] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[15] Zhang Yuecheng, Zhao Shanshan, Mi Guorui, Zhao Jiquan. Oxidative Kinetic Resolution of Secondary Alcohols [J]. Progress in Chemistry, 2012, 24(0203): 212-224.
Viewed
Full text


Abstract

Directed Self-Assembly of Block Copolymers