中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 231-240 DOI: 10.7536/PC161012 Previous Articles   Next Articles

• Review •

Adsorption Materials for Lithium Ion from Brine Resources and Their Performances

Wen Zhang1*, Yingxin Mou1, Song Zhao1, Lixin Xie1, Yuxin Wang1, Jing Chen2   

  1. 1. Key Laboratory of Membrane Science & Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Tianjin University, Tianjin 300350, China;
    2. Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Technology, Tsinghua University, Beijing 102201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.U1430234), the Science and Technology Program of Tianjin (No.16JCQNJC06000) and the National Key Technology Support Program(No. 2015BAB10B00).
PDF ( 2532 ) Cited
Export

EndNote

Ris

BibTeX

Lithium is a very important metal resource for lithium-ion batteries and nuclear industries. With the fast-growing market demand for lithium, the focus of lithium extraction technologies has shifted to aqueous lithium resources, such as seawater and salt lake brine. Adsorption method has been recognized as one of the most suitable technologies for recovery of lithium from aqueous resources. The present paper reviews the development of the adsorption materials of lithium ion comprehensively, including the inorganic adsorbents (the natural ores, carbon materials, Mn or Ti lithium ion-sieves and their forming techniques) and organic composite adsorbents. The organic ligand functional groups (crown ether, calixarene and phosphate) for lithium ion adsorption, and their bonded matrixs are also summarized. The adsorption mechanism, adsorption capacity and selectivity of dififferent adsorption materials are compared. This paper provides a reference for developing of novel adsorption materials and separation systems to extract lithium ion from aqueous brine resources.

Contents
1 Introduction
2 Inorganic materials for adsorption of lithium
2.1 Natural ores and carbon materials
2.2 Lithium ion sieves
2.3 Lithium ion sieves composite materials
3 Composite materials for adsorption of lithium
3.1 Organo-functional groups of composite materials
3.2 Matrixes of composite materials
3.3 Composite materials with lithium ion imprinting technology
4 Conclusion

CLC Number: 

[1] 高峰(Gao F), 郑绵平(Zhen M P), 乜贞(Nie Z), 刘建华(Liu J H), 宋彭生(Song P S). 地球学报(Acta Geoscientica Sinica), 2011, 32:483.
[2] 张宝全(Zhang B Q). 海湖盐与化工(Sea-Lake Salt and Chemical Industry), 2000, 29:9.
[3] Diallo M S, Kotte M R, Cho M. Environmental Science & Technology, 2015, 49:9390.
[4] Mehta V C. Google Patents, 1988.
[5] 杨建元(Yang J Y), 程温莹(Cheng W Y),张勇(Zhang Y),邓元龙(Deng Y L). 矿物岩石(Journal of Mineralogy and Petrology), 1995, 15:81.
[6] Du X, Guan G Q, Li X M, Jagadale A D, Ma X L, Wang Z D, Hao X G, Abudula A. Journal of Materials Chemistry A, 2016, 36, 13989.
[7] Ryu T, Lee D H, Ryu J C, Shin J, Chung K S, Kim Y H. Hydrometallurgy, 2015, 151:78.
[8] Hoshino T. Desalination, 2015, 359:59.
[9] Hano T, Matsumoto M, Ohtake T, Egashir N, Hori F. Solvent Extraction and Ion Exchange, 1992, 10:195.
[10] Gao D, Guo Y, Yu X, Wang S, Deng T. Journal of Chemical Engineering of Japan, 2016, 49:104.
[11] Shi C, Jing Y, Jia Y. Journal of Molecular Liquids, 2016, 215:640.
[12] Chitrakar R, Makita Y, Ooi K, Sonoda A. Industrial & Engineering Chemistry Research, 2014, 53:3682.
[13] Meshram P, Pandey B D, Mankhand T R. Hydrometallurgy, 2014, 150:192.
[14] Lemaire J, Svecova L, Lagallarde F, Laucournet R, Thivel P X. Hydrometallurgy, 2014, 143:1.
[15] Ji L M, Hu Y H, Li L J, Shi D, Li J F, Nie F, Song F G, Zeng Z M, Sun W, Liu Z Q. Hydrometallurgy, 2016, 162:71.
[16] Li H F, Li L J, Shi D, Li J F, Ji L M, Peng X W, Song F G, Nie F, Zeng Z M, Song X X. Chemistry Letters, 2015, 44:987.
[17] Ageev V, Solovev S. Surface Science, 2001, 480:1.
[18] Krischok S, Schaefer J, Höfft O, Kempter V. Surface and interface analysis, 2005, 37:83.
[19] Gong L, Wang R, Xia Z, Chen C. Journal of Chemical & Engineering Data, 2010, 55:2920.
[20] Kim J, Nielsen U G, Grey C P. Journal of the American Chemical Society, 2008, 130:1285.
[21] Kim J, Grey C P. Chemistry of Materials, 2010, 22:5453.
[22] Jeong J M, Rhee K Y, Park S J. Journal of Industrial and Engineering Chemistry, 2015, 27:329.
[23] 徐顺福(Xu S F). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2011.
[24] 刘维慧(Liu W H). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2014.
[25] Ooi K, Miyai Y, Katoh S, Maeda H, Abe M. Langmuir, 1990, 6:289.
[26] Feng Q, Miyai Y, Kanoh H, Ooi K. Langmuir, 1992, 8:1861.
[27] Ooi K, Miyai Y, Sakakihara J. Langmuir, 1991, 7:1167.
[28] Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Chemical Engineering Science, 2010, 65:169.
[29] Liu L, Zhang H, Zhang Y, Cao D, Zhao X. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 468:280.
[30] 王禄(Wang L), 马伟(Ma W), 韩梅(Han M), 孟长功(Meng C G). 化学学报(Acta Chimica Sinica), 2007, 65:1135.
[31] Li L, Qu W, Liu F, Zhao T, Zhang X, Chen R, Wu F. Applied Surface Science, 2014, 315:59.
[32] 董殿权(Dong D Q), 刘维娜(Liu W N), 刘亦凡(Liu Y F). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 7:006.
[33] Xiao J, Nie X, Sun S, Song X, Li P, Yu J. Advanced Powder Technology, 2015, 26:589.
[34] 马立文(Ma L W), 陈白珍(Chen B Z), 石西昌(Shi X C), 冯大伟(Feng D W). 无机化学学报(Chin. J. Inorg. Chem.), 2011, 27:697.
[35] 惠许(Hui X), 陈昌国(Chen C G), 宋应华(Song Y H). 无机材料学报(J. Inorg. Mater.), 2013, 28:720.
[36] 孙淑英(Sun S Y), 张钦辉(Zhang Q H), 于建国(Yu J G). 无机材料学报(J. Inorg. Mater.), 2010, 25:626.
[37] Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Advanced Powder Technology, 2009, 20:432.
[38] 陆红岩(Lu H Y), 杨立新(Yang L X), 邬赛祥(Wu S X), 张令君(Zhang L J), 周礼(Zhou L), 刘肖丽(Liu X L). 高等学校化学学报(Chem. J. Chinese U.), 2011, 32:2268.
[39] Zandevakili S, Ranjbar M, Ehteshamzadeh M. IET Micro & Nano Letters, 2015, 10:58.
[40] Zhang L, Zhou D, Yao Q, Zhou J. Applied Surface Science, 2016, 368:82.
[41] Shi X C, Zhang Z B, Zhou D F, Zhang L F, Chen B Z, Yu L L. Transactions of Nonferrous Metals Society of China, 2013, 23:253.
[42] Moazeni M, Hajipour H, Askari M, Nusheh M. Materials Research Bulletin, 2015, 61:70.
[43] 董殿权(Dong D Q), 毕参参(Bi C C), 李晶(Li J), 胡哓瑜(Hu X Y), 林润雄(Lin R X). 无机化学学报(Chinese J.Inorg. Chem.), 2012, 28:1423.
[44] Tomita Y, Yonekura H, Kobayashi K. Bulletin of the Chemical Society of Japan, 2002, 75:2253.
[45] Tian L, Ma W, Han M. Chemical Engineering Journal, 2010, 156:134.
[46] Chitrakar R, Makita Y, Ooi K, Sonoda A. Bulletin of the Chemical Society of Japan, 2013, 86:850.
[47] 朱晓龙(Zhu X L). 青岛科技大学硕士论文(Mater Dissertation of Qingdao University of Science and Technology), 2013.
[48] Lee S Y, Park S J. RSC Advances, 2014, 4:21899.
[49] Wang L, Ma W, Liu R, Li H Y, Meng C G. Solid State Ionics, 2006, 177:1421.
[50] Zandevakili S, Ranjbar M, Ehteshamzadeh M. IET Micro & Nano Letters, 2014, 9:455.
[51] Nugroho A, Kim S J, Chung K Y, Cho B W, Lee Y W, Kim J. Electrochemistry Communications, 2011, 13:650.
[52] Zhang L, He G, Zhou D, Zhou J, Yao Q. Ionics, 2016:1.
[53] Zhang L, Zhou D, He G, Wang F, Zhou J. Materials Letters, 2014, 135:206.
[54] Kim J, Oh S, Kwak S Y. Chemical Engineering Journal, 2015, 281:541.
[55] 解利昕(Xie L X), 陈小棉(Chen X M). 膜科学与技术(Membrane Science and Technology), 2013, 33:103.
[56] Zhu G, Wang P, Qi P, Gao C. Chemical Engineering Journal, 2014, 235:340.
[57] Park M J, Nisola G M, Vivas E L, Limjuco L A, Lawagon C P, Seo J G, Kim H, Shon H K, Chung W J. Journal of Membrane Science, 2016, 510:141.
[58] Park M J, Nisola G M, Beltran A B, Torrejos R E C, Seo J G, Lee S P, Kim H, Chung W J. Chemical Engineering Journal, 2014, 254:73.
[59] Hong H J, Park I S, Ryu T, Ryu J, Kim B G, Chung K S. Chemical Engineering Journal, 2013, 234:16.
[60] Xiao J L, Sun S Y, Song X, Li P, Yu J G. Chemical Engineering Journal, 2015, 279:659.
[61] Xiao G, Tong K, Zhou L, Xiao J, Sun S, Li P, Yu J. Industrial & Engineering Chemistry Research, 2012, 51:10921.
[62] Han Y, Kim H, Park J. Chemical Engineering Journal, 2012, 210:482.
[63] Hong H J, Park I S, Ryu J, Ryu T, Kim B G, Chung K S. Chemical Engineering Journal, 2015, 271:71.
[64] Hwang C W, Park S G, Hwang T S. Macromolecular Research, 2015, 23:313.
[65] Ma L W, Chen B Z, Chen Y, Shi X C. Microporous and Mesoporous Materials, 2011, 142:147.
[66] De S, Ali S M, Shenoi M, Ghosh S K, Maity D K. Desalination and Water Treatment, 2009, 12:93.
[67] Boda A, Ali S M, Rao H, Ghosh S K. Journal of Molecular Modeling, 2012, 18:3507.
[68] Valente M, Sousa S F, Magalhães A L, Freire C. Journal of Solution Chemistry, 2010, 39:1230.
[69] Hashemi B, Shamsipur M, Seyedzadeh Z. New Journal of Chemistry, 2016, 40:4803.
[70] Alexandratos S D, Stine C L, Sachleben R A, Moyer B A. Polymer, 2005, 46:6347.
[71] Luo X, Guo B, Luo J, Deng F, Zhang S, Luo S, Crittenden J. ACS Sustainable Chemistry & Engineering, 2015, 3:460.
[72] Torrejos R E C, Nisola G M, Park M J, Shon H K, Seo J G, Koo S, Chung W J. Chemical Engineering Journal, 2015, 264:89.
[73] Park S S, Moorthy M S, Song H J, Ha C S. Journal of Nanoscience and Nanotechnology, 2014, 14:8845.
[74] Dixit S S, Shashidhar M S, Devaraj S. Tetrahedron, 2006, 62:4360.
[75] Burgard M, Yaftian M R, Jeunesse C, Bagatin I, Matt D. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38:413.
[76] Yaftian M R, Vahedpour M, Abdollahi H, Jeunesse C, Matt D. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 47:129.
[77] Lukin O, Vysotsky M O, Kalchenko V I. Journal of Physical Organic Chemistry, 2001, 14:468.
[78] 徐光宪(Xu G X), 王文清(Wang W Q), 吴瑾光(Wu J G), 高宏成(Gao H C), 施鼐(Shi N). 上海科技出版社(Shanghai Scientific & Technical Publishers), 1984, 1:60.
[79] 朱慎林(Zhu S L), 朴香兰(Piao X L). 清华大学学报:自然科学版(Journal of Tsinghua Umiversity(Science and Technology)), 2000, 40:47.
[80] Zhou Z, Qin W, Chu Y, Fei W. Chemical Engineering Science, 2013, 101:577.
[81] Zhong Z, Qin W,Fei W Y, Li Y G. Chinese Journal of Chemical Engineering, 2012, 20:36.
[82] Hankins M G, Hayashita T, Kasprzyk S P, Bartsch R A. Analytical Chemistry, 1996, 68:2811.
[83] Zhou W, Sun X L, Gu L, Bao F F, Xu X X, Pang C Y, Gu Z G, Li Z. Journal of Radioanalytical and Nuclear Chemistry, 2014, 300:843.
[1] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[2] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[3] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[4] Zhang Xi, Ren Qilong, Yang Yiwen, Xing Huabin, Su Baogen, Bao Zongbi. Materials for Boron Adsorption [J]. Progress in Chemistry, 2015, 27(1): 125-134.