中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 149-161 DOI: 10.7536/PC161007 Previous Articles   Next Articles

• Review •

Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries

Ying Shi, Lei Wen, Minjie Wu, Feng Li*   

  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Ministry of Science and Technology of China (No.2014C32402, 2016YFA0200100, 2016YFB0100100), the National Natural Science Foundation of China (No.51521091, 51525206, 51372253, U1401243), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No.XDA09010104).
PDF ( 687 ) Cited
Export

EndNote

Ris

BibTeX

With the increasing demand for high power lithium ion batteries in the application of electrochemical energy storage (EES), smart grids and electric vehicle/hybrid electric vehicle (EV/HEV), the development of anode materials with high power density, long cycle life and high safety is of great importance and urgency in recent years. Spinel lithium titanium oxide (Li4Ti5O12, LTO) has been considered as one of the most promising anode materials due to its high charge/discharge voltage plateau, stable crystal, long cycle life and high safety. However, its intrinsic low electronic conductivity, as well as the gassing behavior which usually happens during charge/discharge processes, have hindered the large scale application of LTO. Carbon materials with high conductivity, excellent chemical and thermal stability, various structures and environment friendly, can be used to form hybrid materials with LTO to improve the overall electronic conductivity and suppress the gassing at the same time. Therefore, carbon materials play a crucial role in the modification of LTO. This paper reviews the application of carbon materials for the LTO anode and their research progress in recent years, focusing on the ways and effects of carbon materials on the modification of the electrochemical performance of LTO. The problems in the fabrication and application for the LTO/carbon hybrid materials are addressed. Potential applications of the LTO/carbon hybrid materials are also presented.

Contents
1 Introduction
2 Structural characteristics and charge/discharge mechanism of Li4Ti5O12
3 Modifications of the electrochemical performance of Li4Ti5O12 by carbon materials
3.1 Carbon coating on the Li4Ti5O12
3.2 Li4Ti5O12/carbon composite materials with special structures
3.3 Li4Ti5O12/carbon flexible integrated anodes
4 Carbon modification on the gassing of Li4Ti5O12-based batteries
5 Conclusion

CLC Number: 

[1] Vetter J, Novak P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. J. Power Sources, 2005, 147:269.
[2] Belharouak I, Sun Y K, Lu W, Amine K. J. Electrochem. Soc., 2007, 154:A1083.
[3] Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. J. Power Sources, 2013, 222:448.
[4] Lu W, Belharouak I, Liu J, Amine K. J. Electrochem. Soc., 2007, 154:A114.
[5] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142:1431.
[6] Borghols W J H, Wagemaker M, Lafont U, Kelder E M, Mulder F M. J. Am. Chem. Soc., 2009, 131:17786.
[7] Imazaki M, Wang L N, Kawai T, Ariyoshi K, Ohzuku T. Electrochim Acta, 2011, 56:4576.
[8] Kavan L, Prochazka J, Spitler T M, Kalbac M, Zukalova M T, Drezen T, Gratzel M. J. Electrochem. Soc., 2003, 150:A1000.
[9] Ouyang C Y, Zhong Z Y, Lei M S. Electrochem. Commun., 2007, 9:1107.
[10] 王倩(Wang Q), 张竞择(Zhang J Z), 娄豫皖(Lou Y W), 夏保佳(Xia B J). 化学进展(Progress in Chemistry), 2014, 26(11):1772.
[11] He Y B, Li B H, Liu M, Zhang C, Lv W, Yang C, Li J, Du H D, Zhang B A, Yang Q H, Kim J K, Kang F Y. Sci Rep, 2012, 2.
[12] Huang S H, Wen Z Y, Zhu X J, Lin Z X. J. Power Sources, 2007, 165:408.
[13] Ji S Z, Zhang J Y, Wang W W, Huang Y, Feng Z R, Zhang Z T, Tang Z L. Materials Chemistry and Physics, 2010, 123:510.
[14] Lin C F, Lai M O, Lu L, Zhou H H, Xin Y L. J. Power Sources, 2013, 244:272.
[15] Chen C H, Vaughey J T, Jansen A N, Dees D W, Kahaian A J, Goacher T, Thackeray M M. J. Electrochem. Soc., 2001, 148:A102.
[16] Huang S H, Wen Z Y, Zhu X J, Lin Z X. J. Electrochem. Soc., 2005, 152:A186.
[17] Park K S, Benayad A, Kang D J, Doo S G. J. Am. Chem. Soc., 2008, 130:14930.
[18] Wang G J, Gao J, Fu L J, Zhao N H, Wu Y P, Takamura T. J. Power Sources, 2007, 174:1109.
[19] Bin Kim J, Kim D J, Chung K Y, Byun D, Cho B W. Phys. Scr., 2010, T139:4.
[20] Cheng L, Li X L, Liu H J, Xiong H M, Zhang P W, Xia Y Y. J. Electrochem. Soc., 2007, 154:A692.
[21] Huang J J, Jiang Z Y. Electrochim Acta, 2008, 53:7756.
[22] Li X, Qu M Z, Huai Y J, Yu Z L. Electrochim Acta, 2010, 55:2978.
[23] Shen L F, Yuan C Z, Luo H J, Zhang X G, Yang S D, Lu X J. Nanoscale, 2011, 3:572.
[24] Shi Y, Wen L, Li F, Cheng H-M. J. Power Sources, 2011, 196:8610.
[25] Li J R, Tang Z L, Zhang Z T. Electrochem. Commun., 2005, 7:894.
[26] Wang Y G, Liu H M, Wang K X, Eiji H, Wang Y R, Zhou H S. J. Mater. Chem., 2009, 19:6789.
[27] 张永龙(Zhang Y L), 胡学步(Hu X B), 徐云兰(Xu Y L), 丁明亮(Ding M L). 化学学报(Acta Chimica Sinica), 2013, 71(10):1341.
[28] Amine K, Belharouak I, Chen Z H, Tran T, Yumoto H, Ota N, Myung S T, Sun Y K. Adv. Mater., 2010, 22:3052.
[29] Liu C F, Wang S H, Zhang C K, Fu H Y, Nan X H, Yang Y, Cao G Z. Energy Storage Mater., 2016, 5:93.
[30] 徐淑银(Xu S Y), 刘燕燕(Liu Y Y), 高飞(Gao F), 杨凯(Yang K), 王绥军(Wang S J), 胡勇胜(Hu Y S).硅酸盐学报(Journal of the Chinese Ceramic Society), 2015, 43(5):657.
[31] Wang G X, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 1999, 83:156.
[32] Yi T F, Liu H P, Zhu Y R, Jiang L J, Xie Y, Zhu R S. J. Power Sources, 2012, 215:258.
[33] Aldon L, Kubiak P, Womes M, Jumas J C, Olivier-Fourcade J, Tirado J L, Corredor J I, Vicente C P. Chem. Mat., 2004, 16:5721.
[34] Sorensen E M, Barry S J, Jung H K, Rondinelli J R, Vaughey J T, Poeppelmeier K R. Chem. Mat., 2006, 18:482.
[35] Scharner S, Weppner W, Schmid-Beurmann P. J. Electrochem. Soc., 1999, 146:857.
[36] Ma J X, Wang C S, Wroblewski S. J. Power Sources, 2007, 164:849.
[37] Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K. J. Electrochem. Soc., 2009, 156:A128.
[38] Takami N, Hoshina K, Inagaki H. J. Electrochem. Soc., 2011, 158:A725.
[39] Yi T F, Jiang L J, Shu J, Yue C B, Zhu R S, Qiao H B. J. Phys. Chem. Solids, 2010, 71:1236.
[40] Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5:6652.
[41] Yi T F, Yang S Y, Xie Y. J. Mater. Chem. A, 2015, 3:5750.
[42] 朱希平(Zhu X P), 贺艳兵(He Y B). 应用化工(Applied Chemical Industry), 2012, 41(5):884.
[43] Li N, Zhou G M, Li F, Wen L, Cheng H M. Adv. Funct. Mater., 2013, 23:5429.
[44] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. J. Mater. Chem., 2010, 20:595.
[45] Jung H G, Myung S T, Yoon C S, Son S B, Oh K H, Amine K, Scrosati B, Sun Y K. Energy Environ. Sci., 2011, 4:1345.
[46] Li B H, Han C P, He Y B, Yang C, Du H D, Yang Q H, Kang F Y. Energy Environ. Sci., 2012, 5:9595.
[47] Yuan T, Yu X, Cai R, Zhou Y K, Shao Z P. J. Power Sources, 2010, 195:4997.
[48] Li H S, Shen L F, Yin K B, Ji J, Wang J, Wang X Y, Zhang X G. J. Mater. Chem. A, 2013, 1:7270.
[49] Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23:1385.
[50] Zhang Z H, Li G C, Peng H R, Chen K Z. J. Mater. Chem. A, 2013, 1:15429.
[51] Li H Q, Zhou H S. Chem. Commun., 2012, 48:1201.
[52] Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G, Xia Y Y. Energy Environ. Sci., 2011, 4:4016.
[53] Shen L F, Li H S, Uchaker E, Zhang X G, Cao G Z. Nano Lett., 2012, 12:5673.
[54] Wang J, Liu X M, Yang H, Shen X D. J. Alloy. Compd., 2011, 509:712.
[55] Hu X B, Lin Z J, Yang K R, Huai Y J, Deng Z H. Electrochim Acta, 2011, 56:5046.
[56] Zhu Z Q, Cheng F Y, Chen J. J. Mater. Chem. A, 2013, 1:9484.
[57] Shen L F, Yuan C Z, Luo H J, Zhang X G, Chen L, Li H S. J. Mater. Chem., 2011, 21:14414.
[58] Wang C, Wang S, Tang L K, He Y B, Gan L, Li J, Du H D, Li B H, Lin Z Q, Kang F Y. Nano Energy, 2016, 21:133.
[59] Peng L, Zhang H J, Fang L, Zhang Y, Wang Y. Nanoscale, 2016, 8:2030.
[60] Luo H J, Shen L F, Rui K, Li H S, Zhang X G. J. Alloy. Compd., 2013, 572:37.
[61] Sun X C, Radovanovic P V, Cui B. New J. Chem., 2015, 39:38.
[62] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. J. Electrochem. Soc., 2005, 152:A607.
[63] Zhu G N, Wang C X, Xia Y Y. J. Electrochem. Soc., 2011, 158:A102.
[64] Wen L, Wu Z Y, Luo H Z, Song R S, Li F. J. Electrochem. Soc., 2015, 162:A3038.
[65] Raffaelle R P, Landi B J, Harris J D, Bailey S G, Hepp A F. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 2005, 116:233.
[66] Li X, Qu M Z, Yu Z L. Solid State Ion., 2010, 181:635.
[67] Shen L F, Yuan C Z, Luo H J, Zhang X G, Xu K, Zhang F. J. Mater. Chem., 2011, 21:761.
[68] Naoi K, Ishimoto S, Isobe Y, Aoyagi S. J. Power Sources, 2010, 195:6250.
[69] Wu Z S, Zhou G M, Yin L C, Ren W, Li F, Cheng H M. Nano Energy, 2012, 1:107.
[70] Liang M H, Zhi L J. Journal of Materials Chemistry, 2009, 19:5871.
[71] Sun Y Q, Wu Q O, Shi G Q. Energy Environ. Sci., 2011, 4:1113.
[72] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[73] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442:282.
[74] Zhu N, Liu W, Xue M Q, Xie Z A, Zhao D, Zhang M N, Chen J T, Cao T B. Electrochim Acta, 2010, 55:5813.
[75] Pang S P, Zhao Y Y, Zhang C J, Zhang Q H, Gu L, Zhou X H, Li G C, Cui G L. Scr. Mater., 2013, 69:171.
[76] Oh Y, Nam S, Wi S, Kang J, Hwang T, Lee S, Park H H, Cabana J, Kim C, Park B. J. Mater. Chem. A, 2014, 2:2023.
[77] Kim H K, Bak S M, Kim K B. Electrochem. Commun., 2010, 12:1768.
[78] 闻雷(Wen L), 刘成名(Liu C M), 宋仁升(Song R S), 罗洪泽(Luo H Z), 石颖(Shi Y), 李峰(Li F), 成会明(Cheng H M). 化学学报(Acta Chimica Sinica), 2014, 72(3):333.
[79] Zhou G M, Li F, Cheng H M. Energy Environ. Sci., 2014, 7:1307.
[80] Wu Y, Wu H C, Luo S, Wang K, Zhao F, Wei Y, Liu P, Jiang K L, Wang J P, Fan S S. RSC Adv., 2014, 4:20010.
[81] Shen L F, Ding B, Nie P, Cao G Z, Zhang X G. Adv. Energy Mater., 2013, 3:1484.
[82] Wang K, Luo S, Wu Y, He X F, Zhao F, Wang J P, Jiang K L, Fan S S. Adv. Funct. Mater., 2013, 23:846.
[83] Hu L B, Wu H, La Mantia F, Yang Y A, Cui Y. ACS Nano, 2010, 4:5843.
[84] Li N, Chen Z P, Ren W C, Li F, Cheng H M. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:17360.
[85] Shi Y, Wen L, Zhou G M, Chen J, Pei S F, Huang K, Cheng H M, Li F. 2D Mater., 2015, 2.
[86] Cao S M, Feng X, Song Y Y, Xue X, Liu H J, Miao M, Fang J H, Shi L Y. ACS Appl. Mater. Interfaces, 2015, 7:10695.
[87] Yuan T, Cai R, Shao Z P. J. Phys. Chem. C, 2011, 115:4943.
[88] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Phys. Chem. Chem. Phys., 2011, 13:15127.
[89] Snyder M Q, DeSisto W J, Tripp C P. Appl. Surf. Sci., 2007, 253:9336.
[90] Nakajima T, Ueno A, Achiha T, Ohzawa Y, Endo M. J. Fluor. Chem., 2009, 130:810.
[91] Wu K, Yang J, Liu Y, Zhang Y, Wang C Y, Xu J M, Ning F, Wang D Y. J. Power Sources, 2013, 237:285.
[92] Bernhard R, Meini S, Gasteiger H A. J. Electrochem. Soc., 2014, 161:A497.
[93] Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C. Electrochim Acta, 2013, 108:841.
[94] He Y B, Ning F, Li B H, Song Q S, Lv W, Du H D, Zhai D Y, Su F Y, Yang Q H, Kang F Y. J. Power Sources, 2012, 202:253.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[6] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[7] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[8] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[9] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[10] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[11] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[12] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[13] Yuanchao Du, Zheng Hua, Feng Liang, Yongmei Li, Yongnian Dai, Yaochun Yao. Synthesis of Lithium Iron Phosphate Cathode Material by Liquid State Method [J]. Progress in Chemistry, 2017, 29(1): 137-148.
[14] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[15] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.